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Executive Summary 

 

The transition in the energy sector is seen as pivotal for the decarbonization of the German energy sector 

towards an envisioned carbon-neutral economy by 2050. But this transition seems to be primarily focusing 

on the electricity sector, with other high energy-consuming non-electric sectors still largely dependent on 

fossil fuel. Hence a detailed look into sector coupling becomes important. However, a primary challenge 

associated with it would be a significant rise in electrical demand. Thus, this requires a lot of policy-level 

changes, market alterations, and the development of efficient technologies. Furthermore, the process 

requires robust planning and a well-analyzed pathway incorporating both demand and supply which can be 

accomplished with energy modelling studies. However, the results of any energy modelling study are 

largely dependent on the availability of input data which in the non-electric sector is very limited as opposed 

to the electric sector. Electrical grid balancing requires intricate high spatial and temporal resolution data 

on both supply and demand. However, such detailed data are not available in the non-electric sector, 

primarily because the currently practiced independently operating systems do not necessitate it. The heating 

sector, one of the most energy-intensive sectors in Germany, has data only on the level of total annual 

demands with high-resolution data nonexistent, at least on open-source platforms. The lack of data makes 

detailed analysis difficult as most energy modeling studies rely on open-source data.  

Thus, to overcome this gap in data availability on a high granularity, this study was undertaken in 

collaboration with eGon research project. The study aimed at the development of an open-source database 

of heat demand profiles. Though the final database and its usability are aimed at meeting the requirements 

of the eGon research project, its availability and use for any other work are not restricted. Under eGon, the 

data has planned use for grid optimization analysis. This made the need for correct representation of the 

profile peaks and variability important. Such variability and peak representation could not be achieved from 

the existing state of the art. In addition, the existing state of the art was also seen to have shortcomings 

when dealing with the expected level of granularity. Other methodology and databases identified over the 

study were observed to generate demand only on a microeconomic level (typically a single building), thus 

not meeting the macroeconomic requirements of the study. Hence the development of a new methodology. 

The dependence of heat demand on numerous parameters including temperature, building properties, 

occupant behavior, and source of heating fuel makes statistical estimation difficult. Intra Day Profile (IDP) 

methodology was developed to incorporate all the heat demand-dependent parameters as best possible. The 

methodology was successfully implemented to develop heat demand profiles on a high spatial resolution 

of 100X100m2 (per census cell) and an hourly temporal resolution. The correct representation of the 

temperature-demand relationship was given priority. In addition, the consideration of the building typology 
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resulted in a better representation of thermal building mass. For replicating the occupant behavior, the 

methodology undertakes a stochastic approach based on consumption patterns observed from the Time of 

Use Survey. The induced randomness gives the profiles their uniqueness and higher variability. 

The IDP methodology developed a pool of 24hrs. profiles each represented by a combination of household 

characteristics and temperature based on the controlled runs of the load profile generator, a micro-level 

demand estimation model. The random assignment of the pool profiles to each census cell and each day 

results in the high variability in the IDP profiles. For ease in data storage, the generated profiles were 

aggregated to potential district heating networks or induvial supply grids. Nevertheless, the database 

provides the capability to generate census cell level outputs through the python-based eGon-data library. 

The absence of real-time measured data restricted comparison to existing studies for validation of the 

output. Comparative tests regarding nature, structure, and patterns in the profiles were conducted.  

Compared to the reference profiles, consistent similar results were observed on higher aggregation levels 

(regional or national) with replication of stationary nature of the profiles.  On a census cell level, the 

similarity was much lower. However, considering the lack of variability in other methodologies this 

dissimilarity is desirable. Pearson’s correlation results showed higher similarity on a daily resolution over 

hourly. Again, the desired temporal variability deems the results to be welcoming. The structural similarity 

tests further validated Pearson’s coefficient results. The generated profiles replicated structures of the 

OPSD database which is based on the existing state of art.  No structural similarity could be obtained with 

the DIW database. The demand profiles also showed patterns mimicking the temperature profiles. The 

demand of any given hour was seen to be dependent, with statistical significance, on the prior 3 consecutive 

24th-hour demands. Furthermore, the best representative of the temperature-demand relationship was 

identified to be a sigmoid curve, with correlation coefficients ranging between values agreed by other 

secondary literature. 

All in all, the IDP methodology was able to develop profiles that meet the desired spatial and temporal 

resolution, obtaining of which from existing methodologies was not possible. The open-source availability 

of this database provides the possibility of its use for a wide range of energy modeling studies. The IDP 

methodology also showed possibility of replacing the state of the art on a high spatial resolution. But further 

detailed application and usability tests would be suggested to confirm it. 
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1 Introduction 

 

Energy transition (Energiewende) in Germany has targets to reach a climate-neutral, nuclear-free economy 

by 2050. The transition towards cleaner and renewable energy has been identified as a major requisite for 

the transformation of the energy sector from fossil dependence to carbon neutrality. Decarbonization of the 

energy sector requires immediate implementation of climate mitigation approaches, 90% of which is 

estimated to be achieved through Renewable energy integration and energy efficiency measures This 

transition necessitates a cohesion between numerous aspects including information/smart technology, 

policy frameworks, and market instruments (IRENA, 2020). To ensure a successful transition, Germany 

has emphasized the integration of RE technologies with a significant reduction in fossil-based energy 

generation. But the transition has been observed to primarily focus on the electricity sector, with other high 

energy-consuming sectors (non-electric) such as gas, heating, and mobility still heavily dependent on fossil-

based sources. This is verified by the 36% share of RE in the electricity sector compared to just 13% in the 

latter (Umwelt Bundesamt, 2018). To guarantee a complete transition for a carbon-neutral energy system, 

the consideration of sectoral coupling is crucial to ensure the inclusion of all energy-consuming systems 

and their integration into the renewable supply chain (Kannan, 2018). Energy system modeling provides a 

possibility to analyze the transition and provide a nexus between energy systems and economic models 

which integrates all these energy-consuming sectors on the demand side and with the supply side.  

An increasing trend in the global heating demands because of population growth and improvement in the 

quality of life has been imminent. But only 10% of this increasing demand is met from renewable energy 

sources globally. The heating demand in Germany comprises most of the final energy consumption of all 

buildings. For the residential sector as of 2020, the space heating demand was observed to be 464 TWh and 

DHW of 103 TWh whereas for the non-residential buildings the total SH was 245 TWh and SH of 23 TWh 

(Erigggksen Freja, 2020). Of the total final energy consumption in the German residential sector, 13% 

account for DHW, and 70% account for space heating (Fischer et al., 2016). The majority of this demand 

is met by natural gas with the heating sector consuming 53% of the total gas sold in Germany (Hellwig, 

2003). Therefore, the electrification of this large share of demand would make a great stride towards the 

country’s target of a carbon-neutral economy.  

A crucial step in energy system data modeling is data processing, thus ensuring the formulation of the data 

as per the requirement of the modeling tool (Fleischer, 2021). This is in turn determined by the availability 

of required input data and its granularity. However, there always exists a trade-off while identifying a 

working level of data granularity with regards to computational complexity and the desired detail in the 

output. For instance, there could be cases where even the availability of high granular data would require a 



2 

 

level of aggregation for better analysis and reduced computational loads. On the contrary, there could be 

instances where the higher degree of granularity provides a better result with a higher degree of confidence 

such that the flatness of the optimization is reduced. Though open-source data are available especially in 

the European context, the availability of the same on a high temporal and spatial resolution (high degree of 

granularity) is very limited (Fleischer, 2021). Therefore, before model formulation and interpretation of the 

results, the pre-processing of the data becomes equally important. 

Temporal and spatial high-resolution models of both generation and demand are requirements for the 

system analytical evaluation of energy systems comprising of a high share of renewable energy supply. 

Though high spatial and temporal resolution data on the generation side are available at high transparency, 

demand-side data are rare and require further assessment (Gotzens et al., 2020). For the generation side, 

primarily electricity, the availability of high degree granular data can be assured. This is bona fide in the 

case of variable renewable energy (VRE) sources where high-resolution data is a prerequisite for system 

optimization. For wind and solar, understanding the capability and complementarity of these resources to 

meet the demand on a very high resolution is crucial to increase the share of these generation sources in the 

power system (Couto & Estanqueiro, 2020). Even if in case the generation data is not openly available close 

estimates can be made based on the installed capacity and the location of the system.  

However, the same cannot be said on the demand side where accurate estimation becomes difficult in the 

absence of measured data. More so on a higher resolution due to its dependence on consumer behavior. 

This is even more true in the case of thermal demands over electricity in terms of data granularity (Fleischer, 

2020), considering that the heat demands are largely affected by the ambient temperature (Chramcov, 1982) 

and region-specific consumer behavior are also defined by the fuel source used for heat supply (Kozarcanin 

et al., 2019). Nevertheless, understanding all demand patterns and their behavior is important for ensuring 

an optimal coupled energy system. However, such data is largely absent in the required granularity level. 

Thus, the thesis focuses on the development of a methodology and a final database that can imitate the heat 

demand observed in Germany in a high spatial and temporal resolution such that it may be used in the 

future, for sector coupled energy modelling studies.  

1.1 Background of the Study 

This master’s thesis study (heron referred to as the thesis) was conducted in collaboration with eGon 

research project (referred hereon as the project) team at EUF to develop a methodology and analyze the 

heat demand profile in Germany developed using the same. With this, a high spatial and temporal resolution 

(100*100-meter sq. spatial resolution/census cell and hourly temporal resolution) demand profile was 

generated which could meet the requirements of the project optimization tool. The inputs required for the 



3 

 

study were acquired from project partners who have been working independently on numerous parameters 

which have an impact on the head demand. The result of the study is an important component of the demand 

database used by energy modelling tool eTraGo, developed by the project.    

The project has been working on the development of a transparent, cross-network planning instrument for 

the electricity system to determine economically favorable network expansion scenarios. The project aims 

to investigate the necessary grid expansion in the German electricity grid caused by the integration of 

renewable energy and other energy sectors (Reiner Lemoine Institut, 2015). With their extensive work in 

the electricity sector, the project has been expanding its model to integrate areas of gas, e-mobility, and 

heating. This permits the examination of cross-sectional synergies for the future energy system (EUF, 

2020). Considering the fluctuation in the supply of renewable energy and the changing demand pattern of 

sector coupling, the electrical grid is subjected to new challenges. However, the integration of the above-

mentioned non-electric sector provides the potential to increase the stability of the grid. Hence the project 

has been focused on investigating the benefits of the obtained flexibility through the coupling. The project 

at EUF has been focusing on the integration of the heating system for the system modelling. The thesis is 

thus aimed at achieving it. 

1.2 Motivation 

The heating sector is a vital component of a coupled energy system considering its high share in the overall 

energy demand. Numerous studies have been conducted in the past covering the heating demand sector in 

Germany aimed at best replication of the demand profile. These studies have developed national-level 

standard load profiles based on historical measurements and statistical analysis which have been 

implemented in numerous energy modelling and sector coupling studies. However, the limitations of these 

methodologies are quite prominent (Fallahnejad & Eberl, 2016). The most popular used methodology the 

BDEW methodology, explained in section 2.2.2, makes use of gas demand profiles as a proxy for heat 

demand. Also, a major shortcoming of these methodologies would be the lower variability offered in a high 

spatial resolution. The method also overlooks the peaks in the profiles, whose correct estimation is crucial 

considering its impact on the system costs in the coupled system (Zeyen et al., 2021). Also, discussions in 

the scientific community were encountered where issues regarding the lack of availability of such granular 

data were debated with no conclusive solution (Open Energy Modelling Initiative, 2021). The restrictions 

are mainly associated with legal and financial constraints associated with real-time measurement. Also, 

related complication with the handling of high-resolution data is an issue. In addition, most top-down 

methodology overlooks the consumption on an appliance level thus restricting analysis on individual 

technologies (Kleinertz et al., 2017) and also misinterpret peaks with reduced profile variability (Fischer et 

al., 2016). Hence this study is aimed to fill this gap on the availability of data, by developing a methodology 
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making use of openly accessible data and create a database that is publicly accessible. This methodology 

will be hereon referred to as the Intra Day Profile (IDP) methodology. 

1.3 Research questions 

The thesis aims to develop and make use of this IDP methodology and cover the gap regarding the 

unavailability of a high-resolution realistic heat demand profile. The study will be carried out in 

collaboration with the project and will focus on developing a final output that meets the resolution 

requirements of the project. The objectives of the proposed study are as stated below: 

Objective 1: Develop and implement a methodology to generate high spatial and temporal resolution 

demand profiles for Germany 

• Identify technical and economic parameters affecting heat demand and generate generalized base 

profiles with minimal variations to these parameters. 

• Identification of open-source data sources applicable for the generation of high-resolution demand 

profiles. 

Objective 2: Validate the generated results and ensure their applicability for energy modeling studies 

• Identify and evaluate valid state-of-the-art reference sources 

• Identify statistical measures for the validation of the heat demand profiles and implement them for 

the testing of the results  

The study aims to answer the following research questions: 

• How can the shortcomings of the existing state-of-the-art be curtailed to ensure better replication 

of peaks and variability in the heat demand profiles? 

• What optimal set of assumptions can be undertaken to best generate these heat demand profiles 

ensuring minimal data input and computational load and maximum accuracy? 

• Can the existing SLPs be substituted by the heat demand profiles developed from the proposed IDP 

methodology? 

1.4 Limitations of the study 

• Newer building classes after 2009 have not been integrated into the LPG model and hence the 

actual latest IWU definitions have not been considered. Alterations could be made to the LPG to 

improve the results.  
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• The closed source LPG model limits the alteration in the IDP pool, hence limiting it to the pre-

generated base profiles. This on one hand would mean consistent replicability, but limitation 

regarding the possibility of inclusion of higher variability.  

• Weekday and weekend factors have not been considered for the study. Its consideration would 

mean additional input for the generation of the base profiles and further division in the intraday 

pool. This could be further implemented in future work, but its significance on the census profiles 

is unknown. 

• The profiles for comparison and validation are of different years. Hence the comparison in the most 

case has been done with the normalization of profiles. Such an approach limits the direct 

comparison of the demand magnitudes.  

• The unavailability of data on desired census level for the CTS sector resulted in lesser variability 

in the profiles compared to the residential profile. Changes could be made if better census level 

CTS demand can be acquired in the future.  

• Though statistical tests were conducted for the validation of the profiles, the actual real statistical 

behavior is unknown. Considering the reference profiles are statistical estimates themselves, 

similarity to them does not necessarily prove their similarity to the real profiles. Therefore, if any 

close source real measured values are acquired in the future, the comparison results would be able 

to truly validate the profiles. 

• Since the statistical comparison of single-year time series is uncommon, finding statistical methods 

that ideally fit the requirements of the study was difficult. Hence some common time-series 

comparative methods are implemented with adjustments as per need. Nevertheless, the made 

adjustments are verified to be feasible based on secondary literature.  
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2 Literature Review 

2.1 Methods on Estimating Heating Demand Profiles 

Fischer et al., 2016 and Ruhnau et al., 2019 define three possible measures for the estimation and best 

replication of energy demand: standard load profile, reference load profile, or through statistical data-driven 

approaches. In the case of heat demand, the correct estimation requires the consideration of weather, 

building properties, and consumer behavior. With these inputs, the demand profile can be evaluated by 

either one of the above-mentioned methods. Each of these approaches is briefly discussed below. 

Standard Load Profiles 

Estimation of profiles can be done with a representative load profile that can be generalized on a national 

level and referred to as Standard Load Profiles or Synthetic Load Profiles (SLP). SLPs are primarily used 

for the calculation of non-metered energy consumption patterns (Fallahnejad & Eberl, 2016). In the energy 

sector dealing with modeling and forecast, the practice of utilizing the SLPs is common mostly amongst 

grid operators and grid modelers (D. Peters, R. Völker, 2020). It becomes a convenient measure to best 

replicate a demand curve, especially when real-time measured data are scarce. SLPs are derived from 

historical measured values (Fallahnejad & Eberl, 2016) and hence considered a close representation of the 

consumption curve.   

For heating demand, the commonly used hourly resolution SLP was identified to be based on the 

methodology developed by TU Munich, 2016 which has been elaborated in section 2.2.1 SLPs are 

developed based on an average historical value derived from measurements, linked to the ambient 

temperature, and scaled up to the annual heat demand (Fischer et al., 2016). Generally, the historical data 

is acquired from publicly available data sources, in most cases from local utility companies. Since the 

profiles are generated with an average of a large variety of data from numerous locations the profiles can 

be considered representative of all national heat demand behavior. However, the average values would also 

mean the reduction of accuracy concerning individual profiles. Nevertheless, this approach is also able to 

partly represent the individualities in the buildings as the demand depends on the building properties and 

the solar heat gains due to the building properties (Fischer et al., 2016). For German applications, the 

average load profile for heating gas is used as a heat load profile for households, as explained in (BDEW 

et al., 2020) section 2.2.2. 

Fallahnejad & Eberl, 2016 further discuss in detail the common practice of the use of SLP to calculate the 

natural gas demand based on the temperature forecast. The most recent version of these load profiles 

described with the SigLinDE function as described in section 2.2.2 is used as a representative of the natural 
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gas profiles. Considering the similarity in the heat demand and the natural gas profiles, the use of these 

profiles as a proxy for the largely unavailable heat demand time series has been a common practice.  

A major issue associated with SLPs is the induced limitations with regards to their ability to forecast future 

long-term scenario demands since the profiles are based on historical values. Stegner et al., 2019 mention 

of the increasing reliance on intermittent energy resources make existing electrical SLP unrealistic for 

future prognosis. Also, Fallahnejad & Eberl, 2016 indicate that the lack of consideration of improved 

building typology, use of efficient heating system, changes in the family size, and floor area per person 

causes unreliability issues with the thermal load profiles. Smart metering systems make the possibility for 

the improvement in the electrical SLP possible (Stegner et al., 2019), but financial and technical constraints 

in the heating sector make the further improvement of the SLP difficult.  

Fallahnejad & Eberl, 2016  made alterations to the SigLinDE profiles (the existing SLPs) to better represent 

the extreme temperature for the future forecast. The alterations were done such that no additional effect on 

the computational time of the profiles is observed. The profiles are generated with the assumption that all 

demands over 24°C are comprised of DHW and unaffected by the h-factor. A similar assumption has also 

been made in this study. The observance of extreme temperatures over 28°C and below -20°C is rare in 

Germany and the h-values are constant beyond this with the justification that the heating system is turned 

off or operating at full load respectively. The results from Fallahnejad & Eberl, 2016 showed an anticipated 

shift in the space heating requirements towards colder temperature which would otherwise have been 

overlooked if the demand profiles were based on traditionally used SLPs. Thus, indicating an improvement 

and higher realistic nature of the profile. Nevertheless, applying the methodology to every census cell would 

make the entire process cumbersome. This provided another strong reason for the development of a new 

methodology and moving away from the use of SLP. 

Reference Profiles 

In this method, the entire year is categorized into a limited number of representative days. These 

representative days are then assigned to every individual day based on certain pre-defined day 

characteristics. One such common model is the VDI-4655 where the year is divided into 10 representative 

days. The LPG model is validated against the VDI 4655 model which is further described in section 2.3 

(Drauz, 2016). The VDI 4655 has a higher variability because of higher simultaneity as multiple events 

occur at the same time (Ruf et al., 2016). However, since the model is a closed source, there was no direct 

interaction during the thesis and all the information is based on other secondary literature that has 

implemented this model. Considering the priority that was given to open-source modelling by this study, 

the VID 4655 was not looked into in detail further. 
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Data-Driven Statistical Regression 

These models can accurately predict the demands of known buildings but give poor results for new or 

unknown buildings. Fischer et al., 2016 also mention the use of physical models based on lumped energy 

balance equations and physical building properties for the replication of the profiles. However, these are 

more suitable for individual building energy simulations and not specifically applicable for large-scale 

(national level) demand-based studies as conducted in the thesis.  

Summary 

Though all the above-mentioned approaches replicate the demand profile to a certain degree, each approach 

has its limitations. Fischer et al., 2016 suggest the combination of any two of these models as a possible 

intervention for improvement on the results. Also, the possibility of considering different socio-economic 

factors which have an impact on the heat demand as a possible alternative for improvement. However, with 

regards to this study identifying these factors and acquiring information of the same on the undertaken high 

spatial resolution was challenging. Fischer et al., 2016 also mention the approach of randomization through 

clustering of building types. A similar approach of randomization has been incorporated in the methodology 

followed in the thesis. Also, a stochastic bottom-up approach and aggregation are seen as ideal, as these 

would permit for higher variability in the individual profiles making the results more realistic.   

Though improvements are continuously made to the standard load profiles (Fischer et al., 2016), 

(Fallahnejad & Eberl, 2016), concerning the scope of this study the variability in the profiles is still absent 

(further explained section 2.2.2). Another major issue associated with the thermal SLPs is the smooth nature 

of the curves over a 24hrs. period as seen in Figure 2-1. Though such nature is acceptable on an aggregation 

level, when dealing with profiles on a high spatial-temporal resolution, the results are not accurate. To 

overcome these issues the need for improvement was identified. However, limiting the input data 

requirement and the computational time was crucial.  Hence further research was conducted in this study 

for better representable and highly variable demand profiles with the introduction of a new methodology 

possible with a potential to replace the existing SLPs on a high spatial resolution. 

2.2 The State of the Art 

Though data on annual total heat demands are available in the desired spatial resolution (SEEnergies, 2020), 

its corresponding high temporal resolution is absent. Thus, to accommodate for this into energy system 

analysis, methodologies have been developed over the years to best replicate the heat demand patterns 

following either of the 3 approaches mentioned in section 2.1  

The pioneer in the sector and basis of the existing state of the art was developed by the Bundesverband der 

Energie- und Wasserwirtschaft (BDEW) which makes use of the natural gas demand as the proxy for the 
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heat demand in Germany. Other improved or simplified versions have emerged over the years which are 

based on the original methodology developed by Hellwig, 2003. Though the methodology was specifically 

developed to accommodate the demand patterns of the German heating sector.  

2.2.1 TUM methodology  

The methodology developed by Hellwig, 2003, hereon referred to as the TUM methodology (developed at 

the Technical University Munich) primarily focused on the analysis of statistical load profiles. The study 

extensively defines load profiles for various heat energy-consuming sectors, replicating the gas demand 

profiles. Due to the flexibility of the methodology and the closeness of the generated profiles to realistic 

values, this methodology has been undertaken as the basis of the SLP. The TUM methodology was 

primarily developed for the natural gas network to ensure a fair opportunity for new network operators and 

gas traders. This methodology allowed the mapping of all levels of natural gas customers throughout 

Germany providing an opportunity for new players to participate in the liberalized European energy market.  

The SLP is popular and commonly used in energy modeling studies due to its ability to generate high 

temporal resolution profiles based on statistics thus not requiring any measured data. The SLP in its early 

days provided means of tracking gas volumes purchase on an hourly resolution. Also, the high temporal 

resolution provides a basis to ensure that consumers are charged fairly for their energy usage  (Hellwig, 

2003).  

Measuring real-time values makes the process quite expensive, and unlike for electricity, real-time data for 

the balance of the grid is not mandatory for gas/heat grids. Hence the SLP provides a suitable alternative 

for dividing the annual total consumption into hourly resolution values. Also, if real-time data were to be 

measured, the equipment cost would have to be borne by the consumer thus making the whole process 

highly impractical. The statistical dependence of the methodology manages to provide a realistic load 

profile based on assumptions, and hence the methodology provides an optimum tradeoff for the cost savings 

compared to real-time data measurement and the accuracy of the generated profiles in terms of the temporal 

resolution. The data collected as inputs for the methodology is kept in limits in terms of costs, ensuring the 

non-discriminative representation of all consumers. Hence the TUM methodology can be stated as an 

optimum trade-off between the requirements for temporal detail and spatial accuracy.  

Considering the high correlation between the natural gas demand and heat demand (Ruhnau et al., 2019), 

the gas profiles generated from TUM have also been applied for the generation of heat demand profiles. 

Also, the equal high dependence of both natural gas and heating demand on ambient temperature (Hellwig, 

2003, p. 25), (Chramcov, 1982) thus gives a higher degree of conformity regarding the use of gas profiles 

as a proxy for the heat. Also, a direct link between the two can be drawn considering that natural gas was 
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primarily used for heating, hence the similarity in the demand is anticipated. Ruhnau et al., 2019, p. 7 also 

confirm the possibility of interpreting the gas consumption as a proxy for the temporal profile of heat 

demand which has been validated by the study in the UK where both gas and heat demand data are available 

in daily resolution. The comparison of the real-time data and the heat model developed based on the gas 

demand profile showed a high correlation between the two (R2 = 0.95). Hence the TUM methodology gives 

a basis for the estimation of the heat demand profiles based on natural gas supply. In the present case of the 

absence of data, this is seen as the best method for demand replication.     

The TUM methodology considered the actual thermal insulation of buildings to generate the demand 

profiles which has a major impact on the heat demand. To account for the thermal mass (inertia)/ building 

storage capacity, the profiles developed by Hellwig, 2003 make use of geometric series of temperature 

allocation which takes into account factors of previous day temperatures to determine the allocated 

temperature with the equation below (Ruhnau et al., 2019). Such an approach gives a realistic representation 

of the temperature and in turn the overall demand (BDEW et al., 2020). The geometric series for daily 

temperature allocation is given by Equation 2-1.  

 𝑇𝑎 =
𝑇𝑛+0.5𝑇𝑛−1+0.25𝑇𝑛−2+0.125𝑇𝑛−3

1+0.5+0.25+0.125
  Equation 2-1 

 Source: (Ruhnau et al., 2019)  

 

Where Ta is the allocation temperature, Tn is the measured temperature at that interval, and Tn-1, Tn-2, and 

Tn-3 are the corresponding temperatures at that hour in the previous three days.  

However, Hellwig, 2003 also mentions that further inclusion of the heat supply technology, resident use 

pattern, and the building geometry could further help improve the results. For the methodology developed 

in this study, the resident use pattern has been replicated by the occupancy model, the building geometry 

and age has been considered by the building classes considered while the generation of the base profiles 

which define the age of the building and in turn the level of insulation and the building/apartment floor area 

as per IWU, 2015. The heat supply technology has been fully covered as the methodology is primarily 

focused on demand-side estimation, however, the aggregation on a district heating system level also 

provides a possibility to study the effect of the supply system in further studies. Also as indicated by 

Kozarcanin et al., 2019 the heating energy source with regards to its economic value greatly affects the 

heating requirements irrespective of the ambient temperature hence the inclusion of such aspects is also 

expected to bring alterations to the standard profiles acquired from the TUM methodology.  
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Hellwig, 2003 identified a sigmoid function Equation 2-2 as a best fitting measure for the regression 

between demand and temperature represented in terms of the hourly scaling factor, which was further 

verified by Louvet et al., 2019. TUM methodology also suggests the inadequacy associated with the use of 

an oversimplified linear or a polynomial function, which is seen to be an approach undertaken in a handful 

of studies including DIW Berlin, 2017 also referred in this study.  For instance, the linear function though 

providing a simple means of calculation shows unrealistic demand behavior when the temperature is too 

high or too low. Similarly, the polygon function though develops a perfectly fitting regression model for a 

certain temperature range shows unrealistic behaviors during the two extremes. Overcoming these issues, 

the sigmoid curve makes use of the combination of best characteristics of both the linear and polynomial 

curves to give a better fitting line for the relationship. 

However, a major drawback of the sigmoid curve would be the existence of a small amount of heating 

demand even in higher summer temperatures only for SH demand. This does not make a difference when 

profiles are required on a national or regional level aggregations but needs a level of correction when 

demand is estimated for individual buildings as done by (Louvet et al., 2019). Nevertheless, for aggregated 

demand times series, the demand upon exceeding certain limits is expected to remain constant considering 

certain industrial demand and demand from residential DHW. Also, the curve flattens as the temperature 

decreases.  

 

 
ℎ(𝑣) =

𝐴

1 + (
𝐵

𝑣 − 𝑉𝑜
)

𝐶 + 𝐷 
Equation 2-2 

 

Source: (Hellwig, 2003) 

 

where A, B, C, and D are sigmoid parameters which are defined by the sector and building class considered, 

v is the allocated temperature and v0 is the reference temperature. h(v) or the h factor gives the daily demand 

factor. 

Hellwig, 2003 points out the importance of consideration of three different parameters which are the cause 

of the heat consumption. These include transmission losses, infiltration losses, and supply boiler efficiency. 

Heat demand/consumption is primarily made of the losses through transmission over the entire building 

shell. Transmission could be positive or negative. The gains include those from internal gains (from the 

occupants and the appliances used) and from solar irradiance which is stored in the building mass. The first 

two are considered in the methodology developed in the thesis considering that these are primarily 

dominated by building parameters and occupant behavior (Kaminska, 2019). The final effect is caused by 
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the boiler efficiency and the losses associated with it. The boiler efficiency has been overlooked considering 

its analysis exceeding the scope of the study which is intended for estimation of the demand and not much 

focus has been shed on the supply side which results in the absence of detailed information on the 

availability of information on boiler use on a high spatial and temporal level as planned by this study. Also, 

the effect of the boiler is mainly constant throughout the year with a slight increase in losses observed 

during the summer months due to lower use. Hence an assumption has been made that overlooking this 

constant minor loss would have an insignificant difference on the result over the considered aggregation 

Limitations of TUM 

As with any other statistically developed model, there also exists some limitations and drawbacks with the 

TUM methodology. The generated profiles can represent the structurally determinable components of the 

curve, which include the proportions based on the consumption structure and the external influencing 

factors like the ambient temperature. But since the entire model is based on statistical assumptions, the load 

profile developed is only able to represent consumer demand on a certain aggregation level. For example, 

considering the residential sector the methodology is unable to represent the individual household curve 

fluctuations and only on an aggregated level of e.g. 100 households. Also, Hellwig, 2003 mentions that the 

profile on an aggregated level should be different than on an individual level and in case of observance of 

any similarity is entirely coincidental. But this difference in the TUM method is absent or not significant 

enough. This means that if hourly profiles were developed for two households at a given single location 

and with identical building properties, the profiles from TUM for the two would be identical as well with 

disregard to the occupant behavior. Also, there would exist a certain summer demand in both these profiles.  

Hinterstocker et al., 2015 also identified and verified the deviation between allocated temperature and 

residual load pointing out the drawbacks of the TUM methodology in terms of low allocation of demand 

during cold temperatures and low allocation of baseload during the warm temperatures.  Nevertheless, the 

methodology provides a concrete means for estimating both heat and natural gas demand and has been 

continued to be used as the national standard and state of the art.  

2.2.2 BDEW methodology 

The TUM methodology has been further developed by the Bundesverband der Energie- und 

Wasserwirtschaft (BDEW) to better accommodate the model for a continuously densifying German gas 

network. BDEW is an interest group of the German energy industry working specifically in the sector of 

power production, grid operation, natural gas, electricity, and district heating. The TUM methodology was 

altered to further accommodate other impacting parameters and provide an improved representation of the 

demands to provide a basis for the policymakers to build a framework for the network operators. This 
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methodology hereon will be termed the BDEW methodology. Many versions of the BDEW methodology 

have been developed primarily to overcome the drawbacks of the TUM methodology.  

For this study Hinterstocker et al., 2015, Ruhnau et al., 2019 and BDEW et al., 2020 have been referred for 

a better understanding of the methodology and its improvement over the TUM methodology. The first 

noticeable difference between the two methodologies is the alteration of the demand-temperature regression 

curve from the sigmoid curve as used by TUM. The BDEW methodology proposes the use of a SigLinDe 

function which is a combination of the sigmoid and a linear function. The linear component of the function 

is used in the extreme temperature zones where the results of the sigmoid or polynomial function are not 

realistic. Thus, providing a better representation of the heat demand, the output of the methodology has 

been used as a standard and is referred to as the standard load profile. The SigLinDe function with its linear 

component is represented by Equation 2-3 extracted from (Ruhnau et al., 2019). 

  

 
ℎ(𝑣) =

𝐴

1+(
𝐵

𝑣−𝑉𝑜
)

𝐶 + 𝐷 + 𝑚𝑎𝑥 {
𝑚𝑠𝑝𝑎𝑐𝑒 . 𝑇𝑎 + 𝑏𝑠𝑝𝑎𝑐𝑒 

𝑚𝑤𝑎𝑡𝑒𝑟 . 𝑇𝑎 + 𝑏𝑤𝑎𝑡𝑒𝑟
}+max 

Source: (Ruhnau et al., 2019) 

Equation 2-3  

 

Other than the modified relationship between the demand and temperature BDEW is also based on the 

statistically determined standardized consumption developed based on a bottom-up model without the 

consideration of any existing network and exclusively based on process-specific parameters. The developed 

profiles are based on extensive investigation of individual measurements. However, as mentioned by 

Hellwig, 2003 the high statistical dependence of these standard load profiles does not truly represent the 

forecast procedures of the demand curves. In addition, BDEW et al., 2020 mention systematic deviation 

between allocation and residual load observed in the TUM methodology. Nevertheless, the overlooked 

seasonal factors associated with the demand curve are improved in BDEW compared to TUM.  

The shape of a sample 24 hr. heat demand profile generated from the BDEW methodology would give a 

profile as seen in Figure 2-1 with the magnitude defined by the hourly demand factor and time of year. 
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Source: (Author, generated with demandlib) 

Figure 2-1: BDEW SLP 

 

Though the curve pattern replicates a generalized 24hrs. heat demand profile, the curves tend to be smoother 

and underestimate the peaks of DHW. Thus, the BDEW methodology still does not meet the requirements 

for variability proposed in this thesis. Therefore the study methodology aims to overcome this drawback, 

creating peakier profiles as seen in Figure 4-2 ((c),(d)). 

BDEW software implementation 

In line with the scope of the study, Open Network Modelling Framework (OEMOF) developed a python-

based library called Demandlib was identified as a software-based implementation of the BDEW 

methodology. The demandlib library permits the generation of power and heat profiles for numerous sectors 

and scales them up as per the desired demand. The hourly heat demand values are calculated based on 

Equation 2-4: 

 𝑄(𝑣) = 𝐾𝑊. ℎ(𝑣). 𝐹. 𝑆𝐹  

Source: (Oemof Developing Group, 2016) 

Equation 2-4 

 

Where “KW” is the assumed daily consumption at a temperature of 8°C, h(v) is the daily demand factor 

from Equation 2-2. “F” is the weekday and “SF” is the hour factor. The entire workflow is based on the 

BDEW methodology with the required input being the annual hourly temperature profile and the total 

annual demand. The sigmoid function and associated parameters are evaluated based on the considered 

sector type input. The different sector types in the demandlib module along with the sigmoid factors for 
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each are available in Annex A. The sigmoid factors for the latest building class were also used in the IDP 

methodology. In addition, other minor aspects of the demandlib have also been undertaken for this study.  

Limitations of BDEW 

Though a lot of issues associated with the TUM methodology are improved upon in the BDEW 

methodology, there still exist a few concerns. The variability concerning the spatial distribution and the 

inability of the BDEW methodology to forecast future demand forecasting considering the improvement in 

building insulation and use of efficient heating systems (Fallahnejad, 2017). Also Clegg & Mancarella, 

2019 argue the lack of consideration of the newer building classes in the SLPs makes its use for estimating 

future forecasts irrelevant. Hence the IDP methodology was implemented to overcome these issues. 

Furthermore, Fleischer, 2020 also recommends the use of high granularity data for optimization of systems 

with high VRE share as reduced spatial resolution has an impact on the system least-cost solutions. 

2.3 Load Profile Generator 

Bottom-up engineering approaches for modelling and estimating energy demand are seen as strategic 

decision-making tools especially in the management of transition towards a low-carbon energy system 

(Fleiter Tobias; Rehfeldt Matthias, 2018). Drauz, 2016 in collaboration with Fraunhofer IEE developed an 

energetic bottom-up model which can estimate and reproduce the energy demand of the German residential 

sector per household stock. The model from here on will be referred to as the Load Profile Generator (LPG). 

The LPG model merges the electricity, heat, and water models to form a comprehensive energy demand 

generator. The aim of developing the model was to obtain a realistic replication of demand such that a 

reliable, economically viable, environmentally sound, and self-sustaining decentralized energy supply 

approach could be developed to meet it. The LPG model estimates the demand for two basic residential 

household stocks; Single-Family Households (SFH) and Multi-Family Households (MFH). Fraunhofer 

Institute of energy and wind system technology (IWES) primarily target the use of the LPG model for the 

optimal inclusion of renewable energy into the system ensuring power security with interest in CHP, a 

battery, a photovoltaic and a heat storage tank, and a peak voltage boiler with regards to their performance 

in Single and Multi-Family households (Kneiske & Drauz, 2017).  

The thesis can be vaguely considered a continuation of Drauz, 2016. The major difference being that the 

LPG model on its own generates profiles on a micro level, for individual households, whereas the IDP 

methodology is more focused on optimizing the LPG output to generate profiles on a macro scale 

representing the demand profiles per census cell or any other aggregation level for the entire country. 

Alterations to the LPG wherever possible are made in this study such that data handling complexity is 

reduced but with minimal effect on the final output.  
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The LPG model makes use of the White Box modelling approach for estimating the demand patterns of the 

households. As a result, the output is independent of the historical energy consumption and can largely 

simulate the behavior of occupants in a building and base the energy consumption on it (Swan & Ugursal, 

2009). To better simulate the occupant behavior, LPG considers the appliance distribution amongst the 

households. Also, the building characteristics have a crucial role especially in terms of space heating 

demand, and hence have been taken into consideration in the LPG model. Most importantly compared to 

other reference models analyzed by Drauz, 2016, the ability of the LPG to produce the individuality of each 

day gives it superiority over the reference profiles and is one of the main reasons for use in this study. This 

degree of individuality is brought about by the occupancy model. The LPG bases its stochastic occupancy 

model on Aragon et al., 2019 and Richardson et al., 2008 with the Time of Use probability derived from 

time use survey by the German Research Data Center (Statistisches Bundesamt, 2016). 

The load profile generator is an extensive model comprising the ability to develop electricity, space heating 

(SH), and drinking hot water (DHW) profiles for a household with a given set of characteristics. These 

characteristics are provided as an input for each run of the model. Aligning with the scope of this study 

emphasis was given towards the understanding and implementation of the components of the model 

responsible for the generation of the SH and DHW demand. The appliances use in the household which is 

in turn determined by the household and occupant characteristics greatly affects the electrical and DHW 

demands (Muhammad, 2017),(Kadian et al., 2007). Hence correct allocation of such appliance per 

household stock and occupant number has been prioritized in the LPG model. For residential SH demand 

Berger & Worlitschek, 2018, indicate its high dependence on the ambient temperature and the building 

typology representing the thermal mass of the building. Though the final required temperature is dependent 

on the occupant’s behavior, its effect on the SH demand is not seen to be significant in comparison to the 

impact of the ambient temperature.  

The following section consists of a description of each of the individual LPG component models. Before 

analyzing the energy models, themselves, it was important to get an insight into the operation of the 

occupancy model since it is a crucial component for replicating the consumer behavior and central to the 

high degree of daily individuality observed in the model output. 

2.3.1 Occupancy Model  

A connection between the three energy models generated by the Load Profile Generator is made through 

the occupancy model. The bottom-up energy consumption is based on the occupant’s state in a household 

which in turn determines the time and duration of the energy-consuming appliances used. The LPG makes 

use of the Richardson et al., 2008 model which provides a comprehensive and validated approach for the 
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determination and estimation of the end-use probability. In the most simplistic term, the occupancy model 

distinguishes the status of occupants, if they are home or not, and if they are active or not.  

A simplistic workflow of the LPG occupancy model can be described as follows. For the first period of 

00:00h-00:10 hrs. the start state is determined based on the occupant number. The probability of occupancy 

is defined by the raw data collected from the Time of Use Survey (TUS) for 2012/2013. The survey’s 

probability distribution is based on the daily activity of 300 participants in a 10 min resolution. It classifies 

the occupants into either active/inactive and present/absent state based on the probability of that state at that 

time resolution. Once the starting state is determined the following period is determined by the transition 

matrix. This provides the probability of an occupant in a certain state in the previous period switching to 

another state in the current period. The probability distribution for each day is obtained from Statistisches 

Bundesamt, 2016. And the process continues for all periods. 

For example, a household with a single occupant has a probability of existing in either of the four-occupancy 

states (home-active (11), home-inactive (10), not home-active (01), not-home-inactive (00)).  However, the 

probability of each of these states is not equally distributed. A sample occupancy status is shown in the 

figure below directly extracted from the Richardson model. At 00:00h the probability of the occupant being 

home and inactive is 80.2% and being home and active is 11.4%. Hence in Figure 2-2 the status state 00:00 

is the home-inactive which has a significantly higher probability.  

Table 2-1: Probability distribution of each stage at 00:00h 

Occupancy State 00 01 10 11 

Probability 0.0311 0.051 0.802 0.114 

Source: (Richardson et al., 2008) 

Now with the starting state of the occupancy determined, the transition matrix can be assigned. Again, the 

probability of occupant at home and inactive, continuing existing in that state at 00:10hrs  is 99.8%. With 

this, the status of the occupant in the second interval is known and the process continues for an entire day.  
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Source: (Richardson et al., 2008) 

Figure 2-2: Sample Occupancy Plot 

The final output is a probabilistic daily occupancy status. For a day profile, the same method is implemented 

over the required period. Thus, the entire day is made up of 144 transition matrices in the Richardson model 

with each state depending on the probability observed for the corresponding period (Richardson et al., 

2008). For the annual profile, the entire process is repeated by checking the corresponding day type. With 

the status of the occupant determined for a given time, the LPG then estimates the use pattern of appliances 

in the household/building. For simplicity and reduced computational time LPG only makes use of the 

occupancy output on an hourly resolution. Thus, the occupancy model is crucial to provide the variability 

offered by both the LPG and IDP results. 

2.3.2 LPG SH Model 

The following sections briefly cover the thermodynamic aspects for the working of the model. Extensive 

details are avoided considering the scope of work. Also, since the model is a closed source, analysis was 

only possible from secondary literature.  

The SH demand based on the DIN V4180-6 in its simplest form is defined as represented in Equation 2-5 

(Drauz, 2016). 

 𝑆𝐻 𝑑𝑒𝑚𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑heat losses -Utilization factor * ∑heat gains    Equation 2-5 

 Source : (Drauz, 2016) 

 

Numerous aspects associated with the respective heat losses and gains have been incorporated in the LPG 

to best replicate the heat demand. The LPG makes use of the concept of the monthly balance system method 

for the calculation of the space heating demand. The details on the mathematical calculations and equations 
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used for the calculation of each of these steps are available in Drauz, 2016, pp. 11–17. In general, the LPG 

model considers three different sets of input parameters for the generation of the load profile. Firstly, the 

heat losses and gains are determined through the provided input on the temperature and the radiation data. 

Also considering the internal heat gains the presence of the occupant and the use of appliances are as per 

the occupancy model. Using the determined gains and losses the heating periods are determined. Also 

considered are the outside surface which is in direct contact with the ambient air. Finally, the SH profile of 

one year is determined.  

For the implementation of the DIN-V 4180-6 model, LPG has a predefined set utilization factor of 0.95. 

For the ambient temperature, geometric progression of temperature interval of the last four days is used, 

which is also recommended by the BDEW methodology with equation Equation 2-1. Such an approach 

changes the dependency on the temperature in case sudden large fluctuations in the values are observed. 

For the indoor temperature, the LPG considers 22°C in case of active occupancy. 

Drauz, 2016 validated the SH model against the VDI 4655 model, a reference profile demand estimation 

method. This is a closed source model designed specifically focused on CHP manufacturers to determine 

the norm degree of efficiency for CHPs is essential for the cost-effectiveness of the CHP. Drauz, 2016 

mentions the capability of LPG to overcome the issue of oversimplicity associated with the profiles 

generated from the VDI 4655 model.  The general operation of the model is based on the division of an 

entire year into 10-day types for sample SFH and MFH. The 10 typical days are classified as Summer and 

Winter (Weekday, weekend, sunny, and cloudy) and two transition days. Also, the model limits the number 

of people in an SFH to 12 and the number of apartments in MFH to 40. For every typical day, the VDI 

model generates an energy demand profile of one day with a time resolution of one minute for SFH and 15 

minutes for MFH. The model makes use of the Deutsche Wetterdienst (DWD’s) 15 climate zone 

classification for the extraction of temperature from different sources within the country. The same 

approach has been used in this study for the weather data needed for the estimation of the heat demand, as 

explained in section 3.1.1((Federal Office for Building and Regional Planning (BBR), 2014). Nevertheless 

improved results are developed from LPG than generated by this reference model as claimed by Drauz, 

2016.  

2.3.3 LPG DHW Demand 

The generation of the DHW demand profiles is largely dependent on the occupancy status of any household 

irrespective of the ambient temperature and building dynamics. LPG’s DHW model is based on the VDI 

2067 which was in turn developed based on the Jordan Vejan model. The Jordan Vejan model assigns the 

use of DHW into four categories (short load, medium load, bath, and shower). The model requires a pre-

defined input on the total water requirement of the household (daily water demand), which is independent 
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of the occupant number. The model then generates arbitrary tapping incidents (the action of use of a tap) 

based on a probability function that determines the probability of DHW demand in each time step. Details 

on the model can be found in Drauz, 2016 and Jordan & Vajen, 2001. Based on the flow rate and the tapping 

start time the model determines the power demand for the DHW. The final DHW demand is based on the 

aggregation of each of the tapping incidents. The LPG makes use of a very similar approach the only 

difference being a reduced complexity with replacement of the four end-use categories by three. Also, the 

flow rate, taping length, and the frequency of use of every category are pre-defined in the model with a 

normal distribution of the flow rate and tapping length. The probability of each of the categories being 

utilized is entirely dependent on the occupancy model.  

 

Interlinkage between the energy models 

The occupancy model acts as an interlink between the three LPG energy models. Specific to this study the 

occupancy model determines the occupant’s state which in turn quantifies the heating water demand. Also, 

the occupant’s presence in the home considers the indoor temperature and thus the effect on the SH demand. 

The occupancy model also affects the SH demand considering the heat gains from the occupants. There 

exists an interlinkage between the 3 different components of the LPG. The SH demand is influenced by the 

electricity demand concerning the heat gains obtained from the appliance used. The electrical demand is in 

turn dependent on the DHW demand considering that the hot water is obtained with the use of electrical 

appliances. Since the LPG is used for the development of base profiles for the IDP methodology, all the 

above-mentioned aspects have been taken into consideration during implementation. 

2.4 Existing and Identified Database for the validation of the generated profiles 

As mentioned previously the absence of measured data resulted in difficulty in the validation of the profiles. 

As a result, other studies which were also based on estimations and statistical analysis had to be accounted 

as a reference to validate the generated outputs. Though not the ideal methodology for validation, the results 

of these studies have been self-validated by their respective authors with some also being used as a national 

standard. So quantitative similarity along with strong qualitative reasoning to support it would to a great 

extent provide validation to the IDP generated profiles. A similar validation approach was also undertaken 

by Drauz, 2016 to validate LPG results comparing the SH output with the VDI 4655 and the DHW demand 

with the Jordan/Vajen (Jordan & Vajen, 2001) models. Hence the validation approach undertaken in this 

study can be attributed as scientific.  

For the validation, two different datasets, the BDEW based OPSD dataset and the linear and simplified 

DIW dataset were identified and used for comparison. The OPSD dataset provided a possibility of 

comparison with the standard load profiles which are aggregated on a national scale. Similarly, the DIW 
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provided a unique perspective with comparison on a district heating (DH) level. In addition, a study based 

on the stochastic bottom-up heat demand model developed by Fischer et al., 2016 has also been discussed, 

as suggestions from this study were considered while developing the methods for the thesis. A brief 

description of each of these reference profiles is included below.  

2.4.1 OPSD When2Heat Profiles 

For the comparative analysis of the generated profile, the Open Power system data platform was identified 

as a reliable source. OPSD is a project that develops an open-source free of charge platform primarily 

dedicated to electricity research. OPSD works with the collection of different scales of energy data, validate 

and process it to ensure ease of use specifically focused on energy modelling applications. The project has 

put together a database for the heating demand profiles referred to as the When2Heat Heating profiles (Open 

Power System Data (OPSD), 2020) which is a simulated hourly country-aggregated heat demand and COP 

time series for 16 European countries spanning from 2008 to 2018. The When2Heat Heating profile makes 

use of the SLP approach for the generation of the national level heat demand estimate. Concerning the 

limitations in the availability of real-time measured data (Ruhnau et al., 2019), the when2heat (OPSD), 

though with its limitations, is seen as the best option for the validation of the implemented IDP 

methodology. Also, the availability of sectoral datasets provides the possibility for a much wider range of 

comparisons. 

The OPSD demand profiles for space and water heating are computed by combining gas standard load 

profiles with spatial temperature and wind speed reanalysis data along with the population geodata (Ruhnau 

et al., 2019). The heat demand time series are based on the German gas standard load profile approach and 

defined by BGW and BDEW (BDEW et al., 2020). The inputs used for the generation of these profiles are 

the 2 m temperature, soil temperature level 4, and the 10 m wind speed acquired from (CDS Climate Data, 

2018). The methodology assumes the heat demand to be proportional to the population, gas boilers 

capability to follow the original heat demand, and gas heated building as representative of the entire German 

building stock. The spatial time series are then weighted with the population geodata from Eurostat and 

then aggregated to generate a national-level time series. The national-level output is then normalized to a 1 

TWh national average yearly demand.  

Three major components for the generation of the OPSD demand profiles are the household-specific 

demand profiles, the daily demand factor, and the hourly demand factor as assigned by BDEW methodology 

in section 2.2.2. The temperature sensitivity of these profiles for varying weather conditions is related to 

the local wind speed which is also considered by this methodology. Hourly demand time series are derived 

for a location using the hourly demand factors. These hourly factors are dependent on the building types, 

and 10 different temperature ranges, and for the case of commercial buildings also dependent on the day of 
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the week. To give the profiles a seasonal pattern, these are scaled up as per the daily demand factors. The 

OPSD methodology considers the use of SigLinDe function section 2.2.2 over a sigmoid function for 

determining the daily demand factors.   

For the generation of the DHW profiles, considering the lack of need of SH on high ambient temperature 

days (temperature greater than 25°C), the water heating factors are multiplied with the high-temperature 

hourly demand factor to generate the heating water demand profiles. The SH demand is then calculated as 

the difference between the calculated total demand and the DHW demand (Ruhnau et al., 2019). Finally, 

the generated spatial demand time series are weighted against the population and scaled up to the actual 

demand. The study assumes the residential household share in the ratio of 70:30. The data sets from 2008 

to 2013 are scaled to the annual final energy consumption using the EU building database and then corrected 

for final heat-energy conversion losses. Considering other data inputs in the IDP methodology, only 2011 

values have been used in this study. 

2.4.2 Heating demand for district heating networks 

DIW Berlin, 2017 provides an overview of modelling of time series data based on the CHP maximum and 

minimum generation defined by the heating markets and the heating networks.  The database provided by 

the DIW Berlin gives a basis for the evaluation of the generated profiles in comparison to a DH level 

aggregation. The need for a high temporal resolution heat demand time series for individual heating 

networks is a requisite to determine the commitment and dispatch of the powerplants within the heating 

network. This could in turn be used to model the operation of CHP units in DH networks.  

DIW Berlin, 2017 also mentions the lack of public availability of high-resolution network data which has 

also been an issue for the validation of results in this study. In contrast the data on the annual energy 

consumption and subsequent data on the individual network associated CHP units are available to a great 

extent. Hence based on these available annual energy consumption data, DIW estimates the demand profiles 

on DH level of aggregation. The methodology developed and followed by DIW to generate the profiles 

simplifies the approach of the BDEW methodology replacing the sigmoid function relationship between 

the temperature and heat demand with a piecewise linearization approach as this reduces the number of 

parameters and improves calculation performance with limited loss of accuracy. 

The methodology followed by the DIW study defines a sectoral sub-division of the heating demand into 

the residential and the industrial sector. A large portion of the residential demand is from space heating 

which is largely temperature dependent contrary to the industrial demand. The methodology follows the 

approach Felten et al., 2017 which focuses on understanding the interdependencies between the electricity 

and the heating market and respective market drivers. The methodology is developed primarily to optimally 
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accommodate CHP into the power systems since a combined generation of heat and electricity from CHP 

plants have been proven to be one of the most efficient way of power generation and supply in the current 

market.  

Regarding the inputs used by this methodology, the following have been highlighted as crucial : 

• The daily mean temperature of the location 

• CHP plants of a district heating network and its specifications 

• Full load hours of heating networks calculated based on the annual heating demand and the 

installed capacities of the CHP 

Felten et al., 2017 uses Equation 2-6 for determining the demand at any instance t: 

   𝑄(𝑡) = 𝑄𝑜 +
𝑄𝑚𝑎𝑥−𝑄𝑜

𝑇𝑅−𝑇𝑚𝑖𝑛
 𝑚𝑎𝑥 (0, 𝑇𝑅 − 𝑇(𝑡))  Equation 2-6 

where, 

Qo  is the base demand beyond a certain base temperature  

Qmax is the heat demand corresponding to the minimum temperature 

TR is the base or threshold temperature 

Tmin is the minimum ambient temperature 

 

 

Source: DIW Berlin, 2017 

Figure 2-3: Linearized Demand-Temperature Relationship 

 

The assumptions made in this approach indicate constant demand on exceeding certain predefined 

temperature (TR), which holds considering the heating demand would be equal to a base demand/a constant 

value on exceeding a certain threshold base temperature. But similar to the explanation in BDEW 

methodology (Oemof Developing Group, 2016), the profiles tend to have certain baseload at all temperature 
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intervals. But considering all DIW profiles are based on DH aggregation, the presence of these baseload is 

acceptable. Felten et al., 2017 determined base heat demand and the demand associated with the minimum 

ambient temperature for each heating network. For this, the annual demand and the annual peak demand of 

the network were used with the integral of the heating degree days.   

One major assumption made DIW Berlin, 2017 study is the synonymous use of heat production as the heat 

demand disregarding the network losses. The results describe the primary heat energy consumption of the 

aggregation level and not necessarily the final heat energy consumption, which is the actual energy 

consumption of the residents. This would indicate that the demand seen in the results to be higher than the 

expected demand. Çomakli et al., 2004 calculated heat transmission losses of about 16% of the total heating 

system exergy. But the losses are also affected by the ambient temperature, which in turn affects the supply 

temperature and is largely region and system-specific (Terehovics et al., 2017). However, since acquiring 

and analyzing transmission loss data of all the networks is unrealistic and out of the scope of this study, it 

has been overlooked during analysis. Also, an educated guess is made that the increased demand in the 

primary energy consumption is directly proportional to the final energy consumption and would only affect 

the magnitude of the curve and not the shape itself, which is the actual comparison parameter of this study. 

The DIW database was developed in close collaboration with the German association of district heating 

operators which account for a total of 260 members. DIW Berlin, 2017 mentions the already large and 

increasing number of networks to be a reason for the lack of detailed data availability per network. Also, 

the varying sizes of the network make generalizing the available data impossible. The spatial distribution 

and capacities of each of these networks are not available openly, however, due to the collaboration DIW 

Berlin, 2017 was able to access closed source data, and were able to identify the ten largest heating network 

in Germany based on the maximum heat production of installed CHP units in the network, maximum 

electricity production by the CHP in the network and annual heat production of the heating network. All 

data are based on 2015, so adjustments had to be made for comparison for this study. For the comparison 

in the thesis, amongst all identified databases, this database was closest to the real-time measured values. 

The result obtained from the DIW study is the time series of 10 of the largest district heating networks in 

Germany. However, DIW Berlin, 2017 does not provide a spatial distribution of the networks openly. 

Therefore to identify the location and corresponding census cells under each of the DH networks, the 

database developed by  Fleiter et al., 2020 was used. 

Fleiter et al., 2020 work on the identification of industrial areas nearby high heat demand densities, which 

meet the criteria for development potential as a district heating network making use of the flue gases or 

excess heat released from these industries. Though the categorization of the district heating areas in the 
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study is based on assumptions promoting the use of industrial flue gases, the outputs of district heating 

networks provide a proven estimation of the potential district heating areas in Germany. All neighboring 

census cells with heating demand over 500 GJ are clustered together as a single heating district. The study 

ideally defines such high-demand areas primarily to be urbanized locations where district heating is 

expected to be feasible. Without going into further details of the methodology available in Fleiter et al., 

2020, these district heating areas were used as a source for spatial linkage between the DIW profiles and 

the census cells. The spatial distribution database of the potential network from Fleiter et al., 2020 was 

acquired from sEEnergies Open Data, 2020. 

2.4.3 Estimation based on the heating degree days 

A common and simplistic approach for estimating a heat demand profile is through the application of the 

concept of Heating Degree Days (HDD). Heating Degree days is a technical index taking based on the 

consideration of the ambient temperature and the average room temperature used to describe the heating 

requirements of a building (Kuru & Calis, 2019). HDD gives a measure of the severity of winter in terms 

of the outdoor dry bulb temperature and a measure of sensible heating required for a given location 

(Giannakopoulos & Psiloglou, 2006). Heating Degree Days are the primary basis of estimation of heating 

demands, especially for space heating. In the case of DHW, the effect of HDD is minimal as the demands 

are observed to be consistent throughout the year. As mentioned by BizEE Energy Lens, 2021, the most 

crucial and also the most difficult aspect of determining the heating degree days is the base temperature 

also referred to in some literature as the threshold temperature. Base temperature (threshold temperature) 

is the temperature level considered below which the HDD is calculated. It is the difference between the 

typical building temperature and the average internal heat gain (BizEE Energy Lens, 2021). However, this 

value is dependent on many factors and may vary from building to building. Therefore, considering a set 

value for a large region, for an entire climate zone as done in this study is already a drawback. However, 

since generating specific HDD profiles is not the primary scope of the study, this approach is taken to 

observe and analyze the behavior of the generated IDP curves with the HDD of specific zones. For the 

analysis, the base temperature has been assumed following the findings of Kozarcanin et al., 2019. The 

respective HDD profiles of the census cells were generated to observe the behavior of the profiles against 

it, which is also seen as a reliable measure of validation. 

2.5 Other relevant aspects for heat demand estimation 

2.5.1 Building classification and Characteristics 

The housing stock for Germany has been divided into 12 use classes and 6 age classes. Though advanced 

models regarding the availability and estimation of the occupancy type and precise determination of the 

occupancy status of households are available, the LPG model is based on the German Household stock 
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categorization, which limits the input data requirement compared to other models and methodology 

followed in Aragon et al., 2019. The construction type of a house is seen to have a great impact on the 

heating demand which is truer in the case of SH demand. The thermal mass of the building defines the 

additional temperature needed to measure the desired temperature (Hellwig, 2003). Hence correct allocation 

of the building classes becomes important. The load profile generator makes use of the classification based 

on the categorization done by the Institut Wohnen and Umwelt (IWU, 2015). Parameters such as the 

building geometry, overall heat transfer coefficient, adjacent buildings, heating system, modernization 

actions, and residential behavior are considered for this categorization. Based on the building house type 

and the commonly used CHP type for such households, the IWU provides an approximate average annual 

heating requirement of such building categories. Details of the household class and their characteristic 

properties are presented in  Annex B. 

2.5.2 Data Aggregation 

The IDP methodology aims at the development of heat demand profiles on a high spatial and temporal 

resolution. The final database comprises 8760 hrs. profile for over 35 million census cells. This would result 

in an enormous data volume, limiting computation and problems associated with storage. Hence to 

overcome this issue eGon proposes the storage on aggregation levels defined as potential district heating 

areas for future forecasted scenarios. The project has determined Prospective Supply Districts which are 

accumulated census population cells that constitute an aggregation of the nearby cells with heating demand 

exceeding 100GJ. To restrict the size of the resulting district heating areas the cells, all areas exceeding a 

predefined threshold are split as per the borders of the nuts3 level division. The creation of the district 

heating areas is not a direct output of this study and details on its creation can be found in (openego, 2021a). 

All in all, the entire census population cells across Germany are categorized into 3785 district heating areas. 

However, the district heating aggregation is only observed to account for 12-15% of the total demand. 

Hence for the remaining census population cells, the aggregation was done based on the medium voltage 

(MV) grid level, which is also used in the eGon project for electrical grids extracted from open street map 

data. Details on the categorization of the high and medium voltage grid assignment are available in 

Openego, 2021. The aggregation assumes that these non-district heating demands will be supplied with 

individual CHP. Nevertheless, though the aggregation provides a measure for reduced data volume, Fischer 

et al., 2016 suggest the possibility of resulting unwanted effects such as peak summation and reduction in 

variability. Hence these aspects are kept in mind when evaluating the final resultant profiles.   

2.6 Data sources used in the study 

A large variety of data was needed for the implementation of the IDP methodology. This section provides 

an overview of the data used along with its sources 
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Table 2-2: Data Sources 

Data Description Source 

TRY Climate Zones Spatial distribution of the country into 15 

Climate Zones based on their geographic 

and altitude similarity 

(Federal Office for 

Building and Regional 

Planning (BBR), 2014) 

Temperature Profiles Hourly annual temperature profiles for each 

TRY climate station representative of the 

zone 

(ECMFW, 2020) 

Daily Demand Factor 

(h-factor) 

Scaling factor defined by the relationship 

between demand and temperature. (Sigmoid 

curve) 

Generated by the author 

based on (Oemof 

Developing Group, 

2016) 

Annual Heat demand Residential and CTS heat demand per census 

cell adjusted for forecast scenarios. Based on 

2015 values. 

(SEEnergies, 2020), 

(openego, 2021b) 

Household stock Number of SFH and MFH per census cell. (DESTATIS 

Statistisches Bundesamt, 

2014) rearranged by 

author 

House Type House Classification based on age of the 

building linking it to the materials used and 

in turn the thermal mass of the building 

(IWU, 2015) 

Base Profiles Output of the LPG for the development of 

the IDP pool. 4 cities representing the 

demand profile in all of Germany 

LPG outputs as per 

predefined input 

conditions by the author 

Temperature Interval Categorization of temperature classes per 

average daily temperature values 

(Oemof Developing 

Group, 2016) 

CTS Profiles NUTS3 CTS profile disaggregated to 

individual census cells 

(Gotzens et al., 2020) 

District heating 

network 

Potential District heating network clustering 

defined for future forecast scenarios 

(openego, 2021a) 
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3 Methodology 

3.1 Developing the IDP methodology 

The following methodology was undertaken for the development of highly variable high spatial and 

temporal resolution heat demand profiles. The methodology can generate profiles for the eGon’s forecasted 

scenarios of  2035 and 2050 described in openego, 2021b. However, profiles generated are based on 

temperature data of 2011. The 2011 values were used to maintain consistency with other data sources used 

in the study including the household and CTS demand categorization which are based on the European 

Census 2011. Also, 2011 temperature showed a good representation and a close correlation to the average 

historical values and was observed to be appropriate for future projections. In addition, the 2011 data gives 

average wind speed values and higher solar irradiation which closely represents the future scenarios of 2035 

and 2050 (Maruf, 2021). Hence, with this assumption, all further temperature-based calculations are based 

on these values. With the 2011 data and the census prognosis heat, energy demand values for the two 

scenario years have been forecasted.  

Figure 3-1 shows a descriptive overview of the developed methodology with its detailed description 

provided in this chapter. 

3.1.1 Temperature Profile Allocation 

Estimation of both heat and gas profiles has a heavy dependence on weather data (Kozarcanin et al., 2019). 

This is more true in the case of space heating which is a primary component of heating demand in the 

residential sector, as changes in the ambient temperature largely fluctuate the heat demands (DIW Berlin, 

2017). The selection of correct temperature profiles which give an actual representation of the temperature 

pattern of any area/region and a correct base temperature becomes important while estimating the heat 

demand (BizEE Energy Lens, 2021) In other studies  (Oemof Developing Group, 2016),(DIW Berlin, 2017) 

where demand profiles have been generated on different aggregation scales, the use of average national or 

regional temperature data have been observed. However, in the case of this study, taking a single national-

level data would overlook the primary aim and a critical aspect of this study, of obtaining a high spatial 

resolution, as the same temperature profile would mean a repetitive curve shape for all census cells resulting 

in low variability amongst the different curves. In an ideal case, census cell-specific temperature data would 

generate discrete profiles unique to this cell. But this would be impractical firstly considering the large 

volume of data to be handled and also lack of measurement stations per census cell. 
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Source: Author 

Figure 3-1: IDP Methodology flow diagram 

 

Though profiles with an hourly resolution per km2 are available from (Krähenmann et al., 2018), these are 

statistically constructed and real-time historical values are preferred for this study. Also, if in case such 

measured values were available, the difference in temperature between corresponding or even a cluster of 

cells in a region would be negligible. Hence as an optimal tradeoff between identifying data on temperature 

profiles per census cell, the expected increase in the computation time and the loss of accuracy in the final 

output, the methodology of Test Reference Year (TRY) Climate zones (Federal Office for Building and 

Regional Planning (BBR), 2014)  was identified and used in this study. 

Try climate zones divides Germany into 15 clusters based on climatic conditions and geographic similarity. 

This division was principally done to generate TRY data sets which comprise of details on selected 

meteorological parameters on an hourly resolution for each of these zones from the year 1961 to 1990 put 

together in real weather segments primarily focusing on technical climatology but also designed for a wider 

range of users (Krähenmann et al., 2018).  The new updated version of the TRY datasets which consists of 
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future projections from 2021-2050 was developed by the German Weather Service (DWD) and is mainly 

applicable in the field of heating, cooling, and air conditioning.  The categorization is based on the 

measurement data from 114 climate stations with homogenous data series. Federal Office for Building and 

Regional Planning (BBR), 2014 mentions variations in temperature values for every 100 m vertical 

deviation from the height of the station. Hence elevation was an important aspect considered in the paper 

for the clustering of the zones. But, overlooking other meteorological details provided in the TRY datasets, 

only the regional division provided by this methodology was used. As TRY climate division validates the 

temperature similarity in each of the regions, the use of these for allocation of temperature profile was 

justified.  

For this study, each of these TRY climate zones is represented by a TRY temperature station. The hourly 

resolution temperature data for each station is acquired from ECMFW, 2020. The measured temperature 

values of each of these temperature stations are assumed to be representative of the temperature profiles of 

the entire zone. The regional division as per the TRY climate zone is presented in Figure 3-2. As digital 

zonal division maps could not be acquired, this study was initiated with the digitalization of the climate 

zones. This would allow accurate distribution of population census cells into each of these climate zones 

and thus would be crucial for the development of the profiles in the latter stages of the study.  

 

Figure 3-2: Division of TRY Climate Zones 

Source: Defined by (Federal Office for Building and Regional Planning (BBR), 2014), digitalized by the author 
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ECMFW, 2020 provides 2m temperature data for grid resolution of 0.25 deg on an hourly resolution from 

1979 to 5 days before the date of access. Profiles for each of the TRY climate zone stations were extracted 

for the year 2011 to co-align with other data sources used in eGon project.  

3.1.2 Generation of the Base profiles 

The first step towards the implementation of the IDP methodology was the generation and study of profiles 

generated from controlled LPG runs, referred to as the base profiles. The base profiles are a critical aspect 

of the IDP methodology as they provide the 24hrs. profiles with the desired degree of variability. Drauz, 

2016 implemented the model with the generation of profiles for specific types of households in Kassel for 

validating the output of the LPG.  The same approach under controlled input parameters was conducted for 

4 selected cities: Lubeck, Kassel, Wurzburg, and Schleswig. The selection of the cities was done with an 

educated assumption that the temperature profiles of these cities would be able to capture the general 

temperature trends throughout the country. 

The input provided for these LPG runs was controlled on two aspects. The house type and the household 

type. LPG is capable of taking inputs on all household classes up to class J, classified by (IWU, 2015) 

detailed in section 2.5. But only classes H, I, and J were considered for this study under the assumption that 

all older households before the considered three classes would be non-existent in the future forecast scenario 

of 2035 and 2050. The three classes are the most recent that can be used by the LPG and comprises houses 

constructed post-1984. Zeyen et al., 2021 mention that 75-90% of these building stocks are going to exist 

till 2050 thus justifying the assumptions. Though building classes K and L (the most recent building classes) 

have also been recently defined by IWU, these are recent additions to the building typology and have not 

been included in the LPG. Making alterations to the load profile generator is firstly out of the scope of this 

study and secondly not possible considering the tool is closed sourced. Hence continuing further analysis 

with the above mentioned three. With regards to the household type, 5 different categories have been 

chosen, namely P1a: parents with one child (family size: 3), P2a: parents with two children (4),   PRa: 

retired couple (2), SRa: single retiree (1) and SOa: single (1) which are the most common family sizes in 

Germany (eurostat, 2021).  

As a step to confirm the usability of these assumed controlled inputs, unaggregated sample individual SH 

and DHW profiles were generated for each of the 4 cities. The result was analyzed to verify if the individual 

SH and DHW profiles return agreeable results and if their aggregation provides desirable heating demand 

behavior. The analysis results in section 4.1 confirm this. Hence the combination of these 3-house types 

and 5 household types, were used to generate the base profiles. In addition, temperature and radiation data 

were provided for each run of the LPG based on the city under consideration. 
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Finally, the base profiles were generated for each city with a random combination of the 3X5 parameters. 

A total of 308 SFH and 930 MFH high-resolution base profiles (8760hrs.) were generated with the LPG. 

These were later used for the generation of the IDP pool. The number of profiles created is random and 

could be increased, which would in turn increase the size of the IDP pool, thus inducing further higher 

variability in the final profiles. 

The generation of the final census level demand profiles entirely from LPG model runs was also considered 

during development. However, some issues were encountered which made the approach inefficient. These 

included the need for large input data on census level and the immensely long run time of the model. 

Acquiring and processing such large data at the census level was problematic (Fischer et al., 2016) and the 

run time could not be reduced considering the model was primarily designed for micro-level profile 

generation.  Therefore, the development of the IDP methodology was further continued.  

3.1.3 Temperature Interval allocations 

The definition and the categorization of the numerous temperature classes used for this methodology are 

based on the approach undertaken by the demannlib library. Demanlib is a library generated as a part of 

OEMOF group but also with the capability of working as a standalone library. The library can generate 

hourly resolution curves for both the heating and electricity sectors. The library can generate heat demand 

profiles for both the residential sector based on house type SFH and MFH and also the CTS sector 

categorized into 14 different sub-types. However, considering the low anticipated variability of the BDEW 

profiles (as explained in section 2.2.2), the direct use of demandlib is not applicable for the generation of 

results desired by this study. Nevertheless, it provides a valuable means of reference. A major takeaway 

from the demandlib library for application in the IDP methodology was the division of the temperature 

classes as defined in Table 3-1.  

Table 3-1: Classification of Temperature Intervals 

Temperature 

Class 

Temperature 

Range 

Temperature 

Class 

Temperature 

Range 

Class-1 -20°C to -14°C Class-6 6°C to 10°C 

Class-2 -13°C to -10°C Class-7 11°C to 15°C 

Class-3 -9°C to -5°C Class-8 16°C to 21°C 

Class-4 -4°C to 0°C Class-9 22°C to 25°C 

Class-5 1°C to 5°C Class-10 26°C and above 

Source: (Oemof Developing Group, 2016) 

For the temperature profiles over the 4 base profile cities, each day was categorized into their respective 

temperature class based on the ambient temperature Ta. Also, for every temperature station, each day was 
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assigned a temperature class based on Ta. These classes were then used to select the correct combination of 

the profiles from the IDP pool, thus assigning each day with a 24hr. profile. This permitted a degree of 

control over the randomization as the temperature profile for a summer day would be selected only from 

the pool of profiles corresponding to that temperature interval. For the assignment of the daily ambient 

temperature geometric mean of the temperature of the previous four days for any particular hour (as defined 

by Equation 2-1) was used as this better represents the thermal mass of the building (Ruhnau et al., 2019).  

3.1.4 Intra Day Profile Pool 

Generation of the IDP Pool 

Intra Day Profile pool is a collection of 24-hour profiles with each representing their respective temperature 

classes and household stock type (SFH and MFH). With the assignment of the daily temperature classes to 

the 4 base profile cities based on respective temperature profiles of 2011, every 24hrs. profiles for each 

base profile were assigned to their respective temperature class. Now based on these classes, each class of 

profiles was clustered into their respective class database, also keeping in mind the household stock 

division. However, once the profile is split into the so-called pools, the 24 hr. profile cannot be tracked back 

to the source city. 

For example, considering Luebeck, the first day of the year for Luebeck as per 2011 profile was observed 

to be Class 5. Combining both SFH and MFH building stock types, 629 base profiles had been previously 

generated for Lubeck. Hence 629 different 24-hour profiles or IDPs were assigned to class 5 of the IDP 

pool from Luebeck day one. In total, Lubeck has 76 days assigned to Class 5. Hence, Lubeck contributes 

47,804 profiles to the class 5 pool. The accumulated individual 24-hour profile is then normalized to its 

sum. With a similar approach, splitting all the hourly resolution profiles into IDPs, a total of 451,870 24-

hours profiles were generated categorized as per their respective temperature class and house stock. To 

increase further variability, additional profiles from the load profile generator could be generated, however, 

the impact on the final profiles would not be significant. Hence the total profile output was limited to 1238 

profiles. The final pool consisted of IDPs distributed amongst 9 different classes and 2 household stocks. 

The pool lacks IDPs for temperature classes 1 since none of the 5 cities had these temperature classes. But 

since temperatures below -14°C are seldom expected in any grid cell, the generation of IDP pool for this 

class was concluded to be unnecessary.  

Random selection and incorporation of the IDP pools 

The primary attribute of the developed IDP methodology was the possibility of generating varying heat 

demand profiles for a high spatial resolution of a census cell. This variability and uniqueness to each profile 

were implemented through the randomness introduced during the aggregation of the profiles. For every 

census cell, the total number of households was acquired from DESTATIS Statistisches Bundesamt, 2014, 
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and re-categorized into the two household stock types. Then for each census cell, based on the day’s 

temperature class, random profiles were selected. The number of selected profiles per day was dependent 

on the count of each household stock in the census cell. These daily profiles were then aggregated to 

generate a total 24-hour profile. A similar approach is continued for each day of the year, thus generating a 

randomized 8760 hrs. profile. For example, for a census cell in Bremerhaven TRY climate zone with 3 

SFHs and 5 MFHs, for the first day when the temperature class is 5, a respective number of profiles were 

selected from each household stock from the class 5 IDPs of the pool. These 8 profiles are then aggregated 

to obtain a single 24-hour profile for the day. The same procedure was followed for all 365 days, and IDPs 

were assigned to form a series of 8760-hour profiles. The final 8760 values representing every hour were 

then normalized to their sum.   

3.1.5 Daily Demand Factor 

Following the selection of random profiles, the next step was to integrate the effect of temperature into the 

profiles. For this, the concept of the daily demand factor acquired from the demandlib library was used. 

The factor defines the relationship between the ambient temperature and the demand. This was necessary 

to give the selected curves a seasonal trend. The daily demand values are represented by the sigmoid curve 

as defined in Equation 2-2. Each parameter of the curve A, B, C, and D are mathematically calculated based 

on the house type under consideration. The demandlib library defines a specific parameter for every 

combination of household stock and house type. But only the latest combination has been used in the 

methodology keeping in mind the need for future forecast scenarios and limiting the computational time 

and working data volume. Nevertheless, the difference in the demand factor values due to these varying 

parameter combinations was not found to be significantly different, hence justifying the use of only the 

latest combination. Hence, for all household stock and house types considered, the latest of the parameters 

defined by demandlib (A=3.046, B=-37.183, C=5.672, D=0.116) were used. The sigmoid factors for other 

building typologies are available in Annex A. With this, the daily demand factor for all TRY climate stations 

(h-value) was calculated. Furthermore, the demandlib library also makes use of an hourly scaling factor 

which scales up each hour of the day based on the household stock and the temperature class of that 

particular day. But this has not been implemented here, as unlike the BDEW there already exists a large 

amount of variability due to the randomization. Thus, every hour of the day is unique and does not need to 

be further scaled. The final 8760 demand-factor was then normalized to its total to give individual census 

cell its respective demand pattern.  

Finally, the demand patterns of each cell are scaled up to their respective annual demand values thus 

providing a final residential heating profile per census cell. 



35 

 

3.2 Generation of CTS Profiles 

The commercial sector is another significant contributor to the heating demand. A slightly different 

approach was undertaken for the generation of the CTS profiles due to the unavailability of detailed data 

for the sector (unlike in the case of residential). The CTS profiles were derived with the combination of two 

different inputs. For the profile shape, the inputs were used from the disaggregator tool (Gotzens et al., 

2020), which is a python-based library tailor-made for developing energy demands for the German heating 

sector. The tool, an output for the DemandRegio research project, is aimed towards the development of 

high spatial and temporal resolution electricity and demand profile generation. Considering the common 

practice of using gas profiles as a proxy for the heat demand (Hellwig, 2003, p. 25), the disaggregator-

generated gas profiles were used as the curve pattern for heat profiles. Though the tool permits the selection 

of any desired year as the input for the generation of the profile, to maintain consistency with other data 

sources 2011 profiles were used.  However, the tool is only able to give an output in NUTS-3 district level 

spatial resolution making use of the profiles generated with the standard load profiles. 

To meet the census cell resolution requirement of the project, each census cells within the respective district 

were assigned the profile for the district. Hence all cells within a district have identical curves. Though this 

approach prevented a higher degree of variability in the curves between census cells within the same district 

as compared to the residential sector, this was seen as the most convenient way to develop realistic high 

spatial demand for the CTS sector. Once respective profiles were assigned for the cells, these were then 

scaled up based on the total CTS demands of the cell. The CTS demand was acquired from the census 

demand per cell aggregating all service sector demands of that cell.  

3.3 Aggregation of the demand profiles 

The methodology discussed in the previous sections was implemented to develop hourly resolution heat 

demand profiles on a high spatial resolution per census cell. But storage and processing of this large volume 

of data are difficult. Also, validation is an important phase of the study. And as mentioned, high spatial 

resolution demand forecasts are not available and therefore the aggregation of the data to the level on which 

a proven study is based becomes important. Hence for this, the aggregation of the census profiles was done 

on two levels. Firstly on a district heating level as defined under the egon project which clusters neighboring 

cells to form district heating regions. For those census cells which are not categorized under DH network, 

the aggregation is done under the medium voltage substations defined by OSM as detailed in section 2.5.2.   
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3.4 Validation of IDP methodology 

An important aspect following the generation of the heat demand profiles was the validation of the 

generated database. The absence of real-time measured data slightly complicated the process. However, 

two different validated databases were identified, described in section 2.4. These were used as reference 

profiles for comparison. These include: 

• OPSD when2heat database 

• DIW Berlin district heating network 

 

Both OPSD and DIW databases are both developed with a top-down approach. The OPSD provided the 

possibility of comparison on a national aggregation level and the DIW on a district heating/regional level. 

However, considering both these profiles are on a certain aggregation level, for individual census cell 

comparison, direct BDEW methodology was implemented by generating BDEW profiles for a given cell 

using demandlib. Irrespective of the aggregation level the comparison was done on either of the two scales: 

Daily 24 hours scale and Annual 8760 hours scale. The daily scale provides a comparison of hourly 

variability and aspects such as the behavior of peaks in the profiles. The annual scale analyzes possible 

trends, seasonality, and cyclicity. In summary, the following quantitative aspects were evaluated for testing 

the comparative similarity:  

• Nature of the profiles and the effect of randomness on it 

• The pattern in terms of seasonality and cyclicity shown by the profiles 

• Structural similarity to the reference profiles 

• Behavior in terms of the demand and temperature 

 

Ruhnau et al., 2019 suggest demand time-series validation in terms of accuracy, comprehensiveness, and 

applicability. Similarity tests regarding the nature, pattern, and structure provide a means of validating the 

accuracy aspects. Also, the data generated are expected to give comprehensive results considering that the 

profiles are generated for high spatial resolution covering a detailed heat demand on the geographical 

locations. Also, the high variability in each of the profiles gives a more realistic coverage of the overall 

heating demand sector in Germany. In terms of applicability, though the initial proposed plan was the use 

of the database for grid optimization with eTrago modelling tool, this could not be implemented. Hence 

this leaves an opportunity for future studies to test the applicability of the database to further verify the 

generated outputs.  
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In addition to the comparison with the reference profiles, inter profile comparison is also crucial to 

understand the behavior of the curves. This mostly helps in validating the effect of randomization 

implemented in the study. The following approach was taken to ensure its validation:  

• The behavior of the individual curves: This category covered the quantitative evaluation of the 

generated profiles which was able to provide details on the behavior of the curve. Referring to similar 

trends observed in other studies and making an educated assumption on the expected curve patterns, 

the obtained patterns, and the impact of randomness on them was validated. For this, the behavior of 

the curve in terms of the HDD was analyzed. Furthermore, the test for autocorrelative properties of 

each of the curves was conducted to observe the effect of randomness on the cyclicity and seasonality 

of the curves.  

• The effect of randomness on the curve: Possible measures to limit the spread of the randomness in the 

demand-temperature curve and the impact of this on the final output was investigated. Also, the 

distribution of the generated profiles was analyzed and justification on the observed patterns was 

developed. Also, a test of stationarity provided a means to test the effect of randomness on the nature 

of the curve. 

 

Statistical Tests for Validation 

The analysis of time series data can be done based on its two components, systematic component (level, 

trend, and seasonality) and non-systematic component (randomness or noise). Athiyarath et al., 2020 and 

Kuru & Calis, 2019 mention RMSE and Pearson’s correlation being the best measure for identifying 

relation and likeliness between two time-series profiles. Also, the use of Pearson’s correlation coefficient, 

RMSE, and MAPE for time-series comparison and validation was applied by Schüler et al., 2015, Chen et 

al., 2017 and Idowu et al., 2015 amongst others. Furthermore, Chramcov, 1982 focused on studying the 

stationarity and autocorrelative features of the heat time series. Thus, based on the approaches undertaken 

by published literature, the following statistical methodologies were identified and used as the most suitable 

measure for the validation of the generated profiles with the reference profiles.   

Correlation: For the comparison of the difference between the observed series and reference series, 

Pearson’s correlation was used to identify the linear relationship between the sample generated curves and 

the reference curves. More similarity between the curves is indicated by the higher value of the correlation 

coefficient. Also, to evaluate the effect of the randomness, the cross-correlation between the two was 

evaluated. Cross-correlation is the measure of similarity between two time-series calculated as a function 

of displacement of one of the sample series to the reference series. Cross-correlation was identified as a 

measure of the degree of similarity between the two. Even though a high Pearson’s correlation would show 
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low cross-correlation (lower percentage of the difference between two profiles) between the two time series, 

this was only expected on a daily resolution and not on hourly resolution. The difference in the cross-

correlation in two resolutions was used to understand and quantify the impact of randomness on the final 

model. Also, the summation of these errors (the difference in the two-time series) is a means of 

quantification to the error and used in the comparison of multiple census cells. To validate the Pearson’s 

correlation coefficient’s statistical significance, a statistical T-test was conducted. 

Structural Similarity: As a further means of similarity test on the two demand profiles and validation of the 

correlation result, a Chow Break Test was conducted to test the structural similarity of the two profiles. 

This provides additional statistical significance to the obtained results. 

RMSE: Another important measure for the comparison as determined to be the root mean square error 

between the two-time series and gives an accurate measure of the profiles. The RMSE provides a more 

concurrent comparison of the errors or differences in the two series and prevents the canceling out of the 

positive and negative errors, which could lead to a false representation of the outputs and analysis results. 

The RMSE of multiple random generated profiles were compared to the available reference profiles. The 

distribution of the RMSE values was used to evaluate the closeness of the curves with the reference. Also, 

the distribution of the RMSE values provided a possibility for the evaluation of the effect of randomness 

on the profiles. In addition, Mean Relative Absolute Error (MRAE) was also evaluated to obtain a better 

interpretation of the performance of the generated profile in comparison to the benchmark as suggested by 

Chen et al., 2017 due to RMSE’s sensitiveness to outliers.  

Nature and seasonality test of the demand profiles: The autocorrelation of the demand curve was conducted 

to evaluate the relationship or the causation of the demand at any instance as a result of the demand in the 

preceding instances. With these results, the impact of randomness on instantaneous demand could be 

identified. It also provided a more descriptive analysis along with the possibility of obtaining a valid 

justification for the observed patterns. Observation of autocorrelation was also important mainly in high 

linearly correlated profiles as it provides the possibility of extracting other useful features of the curve. 

Test for Similarity: The elastic measure of dynamic time warping is another approach that was undertaken, 

which has been proven to provide a basis for the comparison of time series. The methodology provides the 

possibility to determine time-series similarity and the behavior of corresponding points in two-time series. 

The dissimilarity between two-time series is measured in terms of the overall cost for aligning the two-time 

series, meaning the greater the misalignment, the higher the cost. The DTW measure provides a simple yet 

superior measure to provide a quantification to the dissimilarity between the two time-series (Serrà & 



39 

 

Arcos, 2014). The approach was undertaken to compare the IDP profiles with the BDEW and also the 

generated profiles with the reference profiles on different aggregation levels. 

To ensure consistency on all validation approaches in the study the following general aspects were 

followed: 

• With an anticipated loss of accuracy with the use of average temperatures, any comparative analysis 

involving temperature aggregation levels was not used and only done on a census scale. 

• For all census level analyses, the comparison was done on randomly selected sample cells. Only the 

results which are representative of all random sample cells have been presented in the thesis.  

Additional steps for DIW comparison: 

DIW Berlin, 2017 provided a database on heat time series for 10 of the largest DH networks in Germany. 

However, the database lacked the spatial distribution of these networks. Hence for spatially locating these 

district heating networks, DH distribution was acquired from sEEnergies Open Data, 2020. For instance, 

for Gelsenkirchen the nearest and the largest identified DH was the district heating network with a total 

annual demand of 61.287 PJ. Following this, the corresponding census cell under the coverage of this 

district heating network was identified and their corresponding heat time series were aggregated. The final 

aggregation was then compared to the DH_DE_Gelsenkirchenfrom DIW. The comparison of the annual 

total demand was important to confirm that the correct DH network had been identified. However, 

considering the methodology undertaken by DIW Berlin, 2017 and Fleiter et al., 2020 are different, the 

identification of the exact DH network would be difficult, hence a 25% of margin of error in total demand 

while identifying the network was accepted. A similar approach was undertaken for the other profiles. 

Nevertheless, the Berlin and Hamburg profiles were expected to carry a lot more weightage considering the 

same level of NUTS 3 and NUTS2 levels. Also, the largest DH networks in these locations were much 

easier to identify. This was finally followed by the above-mentioned statistical comparison. 
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4 Findings, Discussions, and Analysis 

4.1 Identification of input parameters for the base profile 

This section covers the understanding of the software implementation of the Load Profile Generator and 

validates the sufficiency of identified input parameters to correctly generate desired base profiles and 

overall final demand profiles.  

Prior to the development of the final base profiles, individual separate sample SH and DHW profiles were 

generated with the LPG with the introduction of the two major limitations to the input. Only the latest 3 

household types and 5 most common house types were considered as explained in section 3.1.2. 

The combination of the 3 Household and 5 House type parameters iterated over 3 runs of the model 

generated 45 profiles each for SH and DHW. The 10 min temporal resolution of the LPG was adjusted to 

an hourly resolution.  With regards to the household stock (SFH and MFH), this analysis was performed 

only for SFH, since excluding the randomity the overall curve patterns are expected to be the same for 

either type with variations only in the demand magnitude. Thus, a desirable result seen in the SFH results 

could be used to justify similar results for MFH. 

The observed outputs have been visualized in Figure 4-1 for SH on the left and DHW on the right. The 

comparison showed the effect of different household types on the house type and vice versa. Though the 

limited number of samples were tested with regards to reproducibility, considering the randomness of the 

bottom-up model the obtained outputs can be generalized for all runs (iterations) with respective identical 

inputs. The colors of the dot plot represent each of the house types (H, I, J) compared against the household 

type. For each combination of H and HH types, the 3 points are plotted each representing one specific 

iteration of the LPG run.
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Space Heating Drinking Hot Water 

  

(a) Total Demand 

  

(b) Peaks 
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(c) Variance 

Source: Author 

 

Figure 4-1: Base Profile-Effect of Input 

(Left: SH; Right: DHW) 
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SH base profiles: 

At first glance, the variability in the SH profiles was observed to be much less compared to the DHW, 

which was anticipated. The variability and lower correlation between the sample profiles would mean a 

lower reproducibility/higher variability of the curve patterns. Considering the wide range of profiles needed, 

this lower reproducibility can be considered good, however, this made the evaluation of the effect of the 

parameters quite cumbersome. Considering the primary application of the generated results for grid 

optimization, aspects such as peaks, variance, and total annual demand which affect the design of grid 

systems were analyzed. 

For SH limited variations were observed in the total annual demand generated from the bottom-up model, 

for each of the iterations, thus indicating a degree of control over the variability. The total annual demand 

is seen to be higher for H building types for all cases. The same is the observance in the peaks. Since this 

is the oldest building class, the thermal inertia in the buildings is the lowest hence these higher values in 

both the cases, thus providing a logical justification to the observed behavior. However as can be seen in 

all cases the newer building class, J has higher peaks and total annual demand compared to class I, even 

though J is a newer building class. As per the justification above on the thermal inertia compared to the 

building class, this should not have been the case. Buta further detailed look into the IWU, 2015 building 

class showed a much larger average floor area in class J, thus the higher values.  

For the annual load graph, demand is seen to increase as the occupant number goes down. Though at first 

glance it may look unrealistic, this behavior is quite common for SH demand since its dependence on the 

occupant status is significantly lower than the DHW demand. This behavior of the profiles has also been 

explicitly mentioned by (Drauz, 2016). The dependence of SH on ambient temperature and irradiance also 

plays a part. But the major contributor to the observed result is the internal heat gains of the building. Higher 

occupant number would on one hand mean capturing of the heat released by the occupant themselves and 

on the other hand from the larger number of electrical appliances used from the higher number of occupants.  

In terms of the SH peak, the variations in each of the iteration are observed to be highly variable than the 

annual demand. Thus, this demonstrates the ability of the LPG to generate varying peaks even for very 

similar total demand values, thus the large variability. Such high variability is a desired output of the IDP 

methodology. Also, for instance, comparing H and J, it was observed that the reduction in peaks from H to 

J is higher than the annual demand. This is in line with the expected behavior of improvement in building 

thermal characteristics which have a more significant impact on the demand peaks than on the total demand. 

For any house type, the effect of the household type on the annual demand is seen to be significant whereas 

the change in the peaks is almost linear thus indicating the minimal impact of the family size on the peaks.  
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For the comparison of the variances within the individual profiles, each of the SH profiles was normalized 

to demand per TWh of annual demand. This was important when comparing the individual profile variance 

between other profiles. The variances were observed to be directly proportional to the household occupant 

size. The higher occupant would mean a higher frequency of use of appliances and could be one explanation 

for the higher fluctuation. In all cases house type I was seen to have the highest variance. The exact cause 

of this variance could not be verified. Nevertheless, the consistency in this behavior can validate that this 

is not a random error.  

DHW Base Profiles: 

For DHW the graphs show that the effect of the house type on the curves is negligible. Irrespective of the 

parameter type, all 3 characteristics showed the same behavior for every iteration for each household type. 

Thus, indicating that DHW is significantly affected only by the occupant number and status. The total 

demands and the peaks are seen to be proportional to the occupant number whereas the variances observed 

in the profiles are inversely proportional to the occupant number. The relationship with the variance is 

explainable since the continuous tapping rates decrease with reduced occupants. Also comparing the 

variances in the DHW values are seen to vary 10 folds in comparison to the SH profiles. This thus validates 

the higher variability in the DHW profiles compared to the SH, also confirming the major cause of 

variability seen in both the base and final profiles is dew to DHW. 

Overall, it can be concluded that the effect of the parameters on the SH demand is affected by both the 

house and household types but has a much lesser variability compared to DHW which is only affected by 

the household type. Combining these individual base profiles gave a final output that incorporates the true 

nature of heat demand profiles with controlled variability following a seasonal pattern. This was further 

confirmed with a Pearson’s correlation of 0.96 and a MAPE of less than 12% MAPE with the BDEW 

generated demand profiles on a daily resolution. The visualization and analysis performed in this section 

help confirm the reliability of the pre-assumed input parameters. Also, in terms of the final profiles, no 

significant distinguishable differences were observed in the normalized shape of the curves for any of the 

three house types. Nevertheless, all three were still used for the generation of the actual base profiles. 

A tabularized result summary is available in Annex C. 

 

4.2 Intra Day Profiles 

The main feature and an important component of the IDP methodology is the IDP pool. The pool is a 

collection of the normalized 24hrs. profile categorized based on the household stock and the temperature 
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class. This pool is generated from the base profiles and is the basis for the generation of the final demand 

profiles.  

The section focuses on the evaluation of the behavior of the individual IDPs. These 24hrs. profiles can 

provide a higher degree of variability than offered by other methodologies. Thus, this is a unique feature 

offered by the methodology. Figure 4-2 ((a),(b)) shows the statistical medians of individual IDP pool per 

class per household stock. It gives a visualization of the IDP curve patterns and their behavior with regard 

to the ambient temperature.  

A common tendency of two distinct peaks is seen in all curves irrespective of the temperature class. A low 

morning peak ranging between 5:00 hrs. to 7:00 hrs., and a high peak in the evening ranging between 17:00 

hrs. to 19:00 hrs. Considering these times to be the most likely when the occupants are home and active, 

the behavior observed is logically realistic. Similar intra-day patterns were also observed in Clegg & 

Mancarella, 2019. 

The high-temperature class curves (representing summer days) were seen to show abrupt peaks which can 

be acquainted with the DHW demand. Also, the presence of these peaks in hours of the day with the 

probability of high active occupancy further backs the claim for these profiles being a DHW demand. The 

reason for the presence of the continuous peaks is due to the representation of the graphs in terms of medians 

which may not have necessarily captured the essence of the individual curve behavior. For this individual 

curve must be visualized. For lower temperature classes (representing winter days) a consistent baseload 

can be observed in the profile with no zero demand hours. This can be acquainted with the SH load and the 

peaks with DHW. As a result of the baseload, the lower classes curves are much flatter than the higher 

classes as this reduces the drastic difference in the magnitude of the peak as seen in a DHW profile. 

Comparing the household stock (SFH and MFH) the building behavior is quite identical in terms of the 

shape of the curve. The magnitude is however dependent on the random profiles and the medians do not 

represent it correctly. For better visualization of the actual curves, 2 random samples of class 2 and class 

10 each are presented in Figure 4-2 ((c),(d)). In general, the peaks are seen to be more common in the SFH 

profiles compared to the MFH profile. This behavior was seen in all random samples and can be generalized 

to all profiles. In SFH the non-overlapping peaks are higher than those in MFH. Thus, SFH profiles are 

slightly peakier. However, since all profiles are aggregated, the difference is unnoticeable in the final 

aggregated profiles. In the figure, the green plot indicates the BDEW based SLP which shows the absence 



46 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Source: Author 

Figure 4-2: IDP Pool  

((a)Median-SFH;(b) Median-MFH;(c)Class-10 random sample; (d)Class-2 random sample)
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(a) (b) 

 

 

(c) (d) 

 Source: Author 

Figure 4-3:Variability in IDP 

((a) Class 2-SFH; (b)Class 2-MFH; (c) Class 2-SFH (extremes removed); (d)Class 2-MFH(extremes removed)) 
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of peaks. Correct estimation of heat demand peaks is important especially in an electrically supplied system 

as it associates with over 30% of the total system costs (Zeyen et al., 2021). 

Furthermore, better visualization of individual IDPs can be seen from Figure 4-3 ((a),(b))presented for 

class2. Every range of color in the graph represents the 10th percentile distribution of the profile hourly 

values. The profiles here are normalized to MW per TWh of total annual demand. As seen in the figure, 

even with a degree of randomness induced, 80% of the class 2 IDP follow a close controlled behavior with 

the next 10% (between 80th to 90th) show slight variations and final 10% of the profiles with extreme 

variations. On the second row of Figure 4-3 ((c),(d))a more consistent behavior of the profiles can be 

observed when the upper extreme 10th percentile of the fluctuations are removed. Random assignment of 

the energy-consuming activities is the cause of these abrupt variations in the profiles. Similar behavior is 

observed for both SFH and MFH profiles for all temperature classes. The figures confirm the high amount 

of daily variability induced in the profiles. The profiles for other temperature classes are available in Annex 

D.  

Finally, the approach of DTW was undertaken to compare the dissimilarity of each of the individual IDP 

with a typical BDEW profile to illustrate the variability provided by each profile. For the analysis, both 

BDEW and IDP profiles were normalized to their 24-hr. sum. The results were compared in terms of the 

least overall cost for aligning the two-time series. Figure 4-4 shows the DTW plot of the two extreme 

profiles with regards to their similarity with the BDEW profiles. 

 

(a) 

 

 

(b) 

 Source: Author 

Figure 4-4: Profile Comparision with DTW 

((a) Class 2 vs BDEW;(b) Class 10 vs BDEW) 
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The red path in the diagram indicates the least cost path for the alignment of the two time-series. The 

inclined paths represent the match of the corresponding points in the two profiles. The horizontal lines 

represent the deletion of the corresponding point and the vertical insertion to accommodate matching. In 

Figure 4-4 (a) majority of the connection are with an inclined line thus indicating a higher match of the two 

profiles. On the contrary, Figure 4-4 (b) is dominated by horizontal lines thus indicating dissimilarity. In 

terms of the total alignment cost, Class 3 MFH had the lowest of 0.028 compared to the highest of 0.12 in 

Class 10 SFH. A higher value of the cost indicates dissimilarity. All other comparative plots are available 

in Annex E.  

Summarizing the results of this subchapter, lower-class profiles, typically winter days have a much higher 

similarity with the BDEW SLP compared to higher classes. The result can be justified considering the 

feature of BDEW which has an absence of no baseload hours and smooth curve patterns. In contrast, 

summer days (higher temperature classes) have considerably peaky profiles due to the DHW load and 

absence of baseload due to no SH demand. Hence the profiles generated from IDP are much closer to the 

BDEW profiles on winter days compared to the summer days. From the above analysis, the introduction of 

measured variability with realistic results on a 24-hour scale is confirmed from the implementation of the 

IDP methodology. Hence supporting the further use of the IDP pool to generate the annual demand profiles.  

4.3 The output (High Spatial and Temporal Resolution Heat Demand Profiles) 

With the use of the defined methodology and implementation of the IDP methodology, the final heat 

demand profiles for individual census cells were generated. However, for simplicity in evaluation, reduction 

in data storage volume, and easier visualization, the profiles were aggregated to a pre-defined aggregation 

level. The aggregation was done under two levels: potential district heating networks and individual heating 

which have been pre-defined under the eGon project which has been detailed in section 3.3. The DH 

network covers about 12-15% of the total demand, whereas the remaining is aggregated under the individual 

heating aggregated under the medium voltage grid distribution acquired from Open Street Map (OSM).  

Considering the strict criteria for aggregation of census cells into DH network as defined in section 2.5.2, 

over 75% of the census cells were seen to fall under the mv grid category with the assumption that these 

demands are most likely to be met using individual heat pumps. These demands are thus clustered into over 

3000 sub-station ids. A wide range of fluctuations and statistical variations were seen in the individual 

profiles, largely determined by the number of cells aggregated under each station id. Also, profiles with 

substantially no variability were also observed. Nevertheless, the aggregation brings a reduction in the 

variability and the respective profiles tend to show a stationary behavior with the increase in the aggregation  
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(a) 

 

(b) 

Figure 4-5: Individual Grid Final Profiles 

((a) Normalized individual aggregated;(b) Normalized individual aggregated with extremes removed) 

 

(a) 

 

(b) 

 Source: Author 

Figure 4-6: District Heating Network Final Profiles 

((a) Normalized individual aggregated;(b) Normalized individual aggregated with extremes removed) 
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(explained in section 4.4.1). The higher variability also indicates the difficulty in maintaining the grid 

balance due to unexpected peaks but no consistent demand. 

Figure 4-5 visualizes the variability of the generated profiles based on the hourly median value represented 

by the blue line with shades of green representing every 10th percentile in the hourly values. The profiles 

were normalized since the large fluctuation resulted in difficulty in interpreting the graph. The extreme 

values represent the randomness associated with the individual station_id of the mv grid. However, in terms 

of general tendency, most of the curves seem to show a consistent controlled variable pattern with patterns 

similar to the OPSD profiles. In terms of energy, the variation between the median hourly values and the 

90th percentile is not significantly different. 90% of the profiles have a peak of around 400 MW/TWh at 

around hour 1000. On the higher side, 10% of the profiles show a greater variance with the demand peaking 

as high as 1000 MW/TWh. These peaks are for those mv grids with a large number of census cells with 

overlapping demand. The median curve is seen to have a standard deviation of about 79% of the mean 

value. This level of variance is acceptable since this mainly results due to the scaling from the daily demand 

factor and not the individual IDP itself. Overall, the patterns observed in the curve are consistent for all 

generated curves and as mentioned above the large effect of randomness seen on the individual census cell 

profiles is observed to be minimal once aggregated.  

Similarly, Figure 4-6 represents the results for the aggregation as per the potential district heating areas. 

For the analysis potential areas for 2035 scenarios were considered. The results obtained here were very 

similar to the ones discussed above. 90% of the generated profiles are similar and significantly smaller than 

the upper 10% of the hourly values. An observation from the plot was the slight increase in the normalized 

hourly peak value in the case of DH aggregation. Nevertheless, this is not an actual increase in consumption 

but is seen only due to the smaller total annual demand in the grid networks compared to the mv grid. All 

in all, the impact of aggregation on the reduction of variability was observed here as well. A correlation of 

0.98 was calculated between the two aggregated curves (grid and district), which shows that the aggregation 

can omit the randomness. 

Overall, the two aggregation levels provided a means for ease in the storage of the data and a measure for 

better interpretation of the results. The final database is accessible either in these aggregated formats or per 

census cell resolution. 

4.4 Curve Characteristics Comparison 

4.4.1 Nature and Pattern of the generated profiles 

Evaluation of nature and pattern characteristics of time series provides a broadened perspective to 

understanding its behavior and there, in turn, giving insight on its suitability for energy modelling 
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application. For the evaluation of the nature of the time-series the stationarity test was conducted. Though 

the exact desired nature of the results is unknown considering the absence of measured data; this test was 

done to compare the nature with the reference profiles and dig deeper into the cause of these results. Based 

on the literature Tang et al., 2013 augmented Dicky Fuller (ADF) test was conducted to test the profiles for 

stationarity.  

ADF Null Hypothesis: “If failed to reject, the time series has a unit root, meaning it is non-stationary. It has 

some time-dependent structure” (Brownlee, 2016). 

ADF test was conducted on each of the profiles: reference data, IDP output on all aggregation levels, and 

for randomly selected sample census cell profiles. The results are presented in Table 4-1.  

Table 4-1: Stationarity Test Results 

Dataset Stationarity 

Status 

Confidence 

Interval 

Source 

OPSD National Level Stationary 95% (Open Power System 

Data (OPSD), 2020) 

IDP National Level Stationary 95% Author 

IDP District Heating 

Network 

Stationary 99% Author 

IDP MV Grid  Stationary 95% Author 

IDP Census Cell Non- Stationary - Author 

DIW Berlin Non-Stationary - (DIW Berlin, 2017) 

DIW Hamburg Non-Stationary - (DIW Berlin, 2017) 

 

The stochastic approach taken for the assignment of the daily profiles in the IDP methodology results in 

high variability and extensive fluctuation in the time-series standard deviation. Thus, the non-stationary 

behavior is a consequence of implementing a high variability to the individual census profiles. The non-

stationarity nature of the heat demand profiles makes the development and timely update of the profiles 

important as abrupt changes in the demand pattern are hard to predict. As such analysis may lead to 

misinterpretation in data understanding and forecasting (Iordanova, 2020) the use of census level data for 

further forecasting is not recommended. However, once the aggregation is done, fluctuation in the variances 

and the means of the curves tend to decrease the resulting in the curve showing behavior of stationarity 

which has higher similarity to those generated from existing SLP.  
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As can be seen from the table the aggregation of the generated profiles tend to follow the behavior 

comparative to the reference profiles. This result aligns with the covariance comparison result obtained in 

section 4.5.2 where the correlation between the reference and the generated profiles were observed to 

increase with aggregation. However, considering the larger variability offered in the census level resolution, 

the IDP profiles are arguably able to provide higher accuracy to the heat demand estimation. A stationarity 

measure of the profile also indicates the absence of abrupt changes in the hourly values, an aspect whose 

correct representation would be critical for gird design and optimization for future implementation of the 

generated results. 

Nevertheless, the DIW profiles did not show a stationary result as would have been expected from an 

aggregation. A much larger seasonal variability is observed in the DIW profiles, meaning that the overall 

winter demands are much higher than in summer. The exact cause of this behavior could not be deduced, 

but this is the primary cause of the non-stationary behavior in DIW. The aggregation of census cells within 

both Berlin and Hamburg networks showed stationarity, thus keeping consistent with previous results of 

reduced variability on aggregation in the IDP methodology.  

The nature assessment was followed by a comparative assessment of the profile patterns This was done to 

better understand and identify the cyclicity1, seasonality, and other relevant patterns and their similarity to 

the reference profiles. For this autocorrelation of the generated profiles was determined as suggested by 

Tang et al., 2013. For a random census sample, the autocorrelative plot showed demand patterns close to 

the temperature cycles, thus indicating the strong effect of temperature on the demand profile mostly 

associated with residential SH.  

Overall a similar trend was observed with regards to the autocorrelative behavior of the profiles for both 

reference and generated. An obvious pattern of seasonality can be observed in the profile considering the 

decaying, but fluctuating demand correlation observed in the lags. The ACF plots are presented in Figure 

4-7. For better visualization, only daily resolution plots are provided. In general, a significant correlation 

was observed up to a lag of 30 days. However, statistically significant lag was observed only on the first 3-

4 days with a Pearson’s coefficient of over 0.8. On an hourly scale, the first 3 days' lag peaked exactly on 

the time interval of the 24th hour. This outcome is in line with the behavior observed in temperature-based 

time series. Intuitively, demand today is reasonably closer to the demand at the same time the next day. But 

further away from the starting point the patterns tend to change. However, as the lag tends closer to the 24th 

hour the correlation tends to increase, and the cycle continues.

 
1 Time series fluctuations that are not of fixed period is referred to as cyclicity and those associated with some aspect 

of the calendar is referred to as seasonality (Hzndman, 2011) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Source: Author 

Figure 4-7: Autocorrelation Analysis 

(a) Autocorrelation IPD-national profiles (daily resolution);(b) Autocorrelation OPSD-national profiles (daily resolution);(c) Autocorrelation IPD-national 

profiles (daily resolution-60 days);(d) Autocorrelation IPD-national profiles (Hourly resolution 100hrs.) 
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A cyclic behavior is observed in the patterns where the correlation from the 20th to the 24th-day lag tends 

to slightly increase. Though the exact cause of this pattern could not be verified, a similar trend was also 

observed in the reference profiles. Hence supporting its presence.  

Though analysis of autocorrelation function of non-stationary time series is not ideally recommended, it 

was nevertheless conducted for the census level data. The ACF plot showed a similar pattern to the 

aggregated data but a correlation value with much lower statistical significance. Thus, this further shows 

the effect of the randomness and the higher degree of variability in the high-resolution profiles. As a result, 

as stated above any further statistical process based on these profiles may not be able to give a realistic 

model thus further reasoning for data processing on a certain aggregation level.  

The test for autocorrelation for random sample census cells and all aggregation levels showed a seasonality 

factor that largely coincides with the behavior observed in the temperature patterns thus indicating an 

anticipated presence of a weather seasonality though the annual profile lacks any statistical seasonality. The 

curve shows two winter contiguous blocks of data and one summer contiguous block. Nevertheless, a 

similar level of cyclicity patterns was observed in both the generated and reference profiles Thus, 

qualitatively it can be validated that the profile closely relates to the reference profiles with the desired 

degree of similarity with the ambient temperature behavior.  

4.4.2 Chow Break Test 

A Chow Break Test was conducted to observe the structural similarity of the generated profiles with the 

reference profiles. The test is based on the null hypothesis that the two-time series can be represented by a 

single linear regression. The test assumes that the time series data are stationary with a stable change in the 

variations. The above-discussed stationarity and autoregressive analysis thus help identify the nature and 

pattern of the generated and reference time series and perform the Chow test. A chow break test is ideally 

used for observing a breakage in different subsets of data within a multivariate time series. For the 

application in the thesis, the generated series and the reference series were considered as two subsets and 

their linear regression concerning the ambient temperature was calculated. For the nationally aggregated 

data, the average temperature of all the TRY climate zones was used. Though the use of average temperature 

data was avoided in previous sections, no other alternative could be identified here.  

The results obtained from the test showed a high degree of structural similarity of the generated aggregated 

profiles with the reference profiles on a daily resolution. Thus, validating the IDP methodology can produce 

results similar to the OPSD database. However, on the hourly resolution, the structure of the database is 

seen to be extremely different. Though the profiles do not tally on this resolution, the variability was a 

desired output of the study. In the case of the DIW comparison, the rejection of the null hypothesis was 
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observed in all aggregation levels. Though the autocorrelation function for DIW profiles showed results 

very similar to the IDP and OPSD profiles, the structure of these profiles is quite different. A primary cause 

of this is the linear function used to establish the relationship between the demand and temperature in this 

methodology as mentioned in section 2.4.2. Due to this, a highly sloped winter-to-summer curve can be 

seen in the DIW profiles. On a census level, the structural similarity between the IDP and the existing state 

of the art could not be obtained. Nevertheless, this was an expected result considering the large variability 

obtained in the IDP methodology. The results of the Chow Break test are summarized in Table 4-2. 

 

Table 4-2: Results Chow Break Test 

 Resolution F-statistics P value H0 Status 

OPSD national vs IDP National Total 

Demand 

Hourly 31.75 ≈ 0 Reject 

OPSD national vs IDP National Total 

Demand  

Daily 0.55 0.57 Retain 

DIW Berlin vs IDP Berlin Hourly 194.14 ≈ 0 Reject 

DIW Berlin vs IDP Berlin Daily 51.04 ≈ 0 Reject 

DIW Hamburg vs IDP Hamburg Daily 20 ≈ 0 Reject 

DIW Hamburg vs IDP Hamburg  Hourly 83.14 ≈ 0 Reject 

IDP Census vs BDEW census  Hourly 70.48 ≈ 0 Reject 

IDP Census vs BDEW census  Daily 5.22 0.005 Reject 

 

The Chow Break test also can be used as a measure of statistical validation of the Pearson’s correlation. 

The method has been implemented to measure the covariance of the generated and the reference profiles in 

the following sections. 

 

4.5 Comparative Validation 

4.5.1 Comparison with the BDEW -24hrs. scale 

The identification of the OPSD database avoided the need for the creation of individual BDEW based 

census profiles and their aggregation into the national level, as was initially proposed. The OPSD database 

provided a much simpler and convenient alternative. The creation of the BDEW profiles for individual cells 

would have induced enormous computational time and data storage volume. Therefore, to avoid redundancy 

the OPSD was used for analysis for all national-level comparisons. Also, through literature, OPSD could 

be confirmed to be a well-established and reliable source for demand data on a national scale and has been 
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used in other studies (Maruf, 2021) for providing the closest estimation to the heat demand profiles. Hence 

the database can be deemed feasible for use as a reference profile for the comparison and evaluation of the 

generated demand profiles.  

As the OPSD profiles follow the BDEW methodology the variability in terms of the 24 hr. profiles is absent 

or very limited. Figure 4-8 represents the variability observed in the profiles at different levels for both 

reference and generated profiles. For better visualization, all 24 hr. profiles have been normalized to their 

sum (MW per MWh). Each shade of red represents the 10th percentile of the data for every hour in a 

24hours period. Thus for every hour of the day, the spread of the demand values can be seen. The time of 

peak demand is consistent with a specific time of the day for all profiles. For OPSD, though SH demand 

Figure 4-8(a) patterns are partially justifiable, the behavior of the DHW profile Figure 4-8(b) is highly 

unrealistic. Regarding daily variability, limited variability can be observed in the SH profiles, but the DHW 

profiles are repetitive and identical for almost every day of the year and indicated by all values equal to the 

median. A maximum standard deviation of 0.0125 was observed in the normalized total heat demand profile 

Figure 4-8(c). Rather than an explanation of the numbers the variation in the profiles can be observed clearly 

when observed side by side with a sample output of the IDP methodology. Figure 4-8 (d)SH, (e) DHW and 

(f) Total demand represent the IDP output of one random cell. In general, a higher spread of the hourly 

curves can be observed in the IDP profiles compared to the OPSD profiles. Similar results were obtained 

for other sample profiles where the peaks were seen to be over 15 times the hourly mean. A clear pattern 

of the majority of days can be seen on the removal of the upper 10% extremes Figure 4-8 (g). However, 

once all census cells are aggregated to form the national-level data, the large variability is seen to disappear 

as seen in Figure 4-8 (h). Hence, the aggregation generates results very similar to the OPSD results in terms 

of variability. This thus indicates the capability of the method to generate similarly variable profiles on a 

high aggregation level. 

In terms of the national level peaks, the IDP is seen to be slightly skewed towards the evening peak 

compared to a morning peak on OPSD. This could be due to the higher occupant active probability during 

these hours but the exact cause could not be confirmed. 
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(f) 

 

(g) 

 

(h) 

 Source: Author 

Figure 4-8: Profile Variability Comparison 

 (OPSD profiles[(a)SH,(b)DHW,(c)Total heat]; Sample IDP[(d)SH,(e)DHW,(f)Total heat];(g) Sample IDP tota heat extremes removed (h) IDP Total heat 

National) 
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For the IDP SH profile, constant normalized profiles are observed with the majority of the variations within 

the 10th and 90th percentile with a few outliers. This would be true as the load is almost entirely dependent 

on the ambient temperature. Also, the effect on the time of the day with regards to the occupancy status can 

be observed in the patterns with peaks in mornings and evenings when the occupants are highly likely to 

be active. This behavior was observable when the graphs were viewed on removing the outliers. Among all 

tested samples a small number of outlier profiles were identified which is significantly higher than the SH 

mean. These profiles comprised of a sudden surge and instantaneous drop in demand which are ideally a 

behavior seen in DHW profiles and not expected in SH demand. For all random samples, such profiles are 

observed on summer days where ideally SH would be absent. Due to limitations to the access to the LPG 

directly, based on the literature this unexpected behavior of the SH profile could only be explained by the 

stochastic nature of the profile assignment. Firstly, the existence of such 24hrs. profile in base profile 

outputs is due to a limitation of the load profile generator. As explained by Drauz, 2016, the model increases 

the indoor temperature to 22 °C when the occupant is active and the set temperature is below the ambient 

temperature. In winter, the heating is consistently on and hence such peaks are not observable as the energy 

needed to maintain a consistent temperature is less than to meet sudden surges (peaks). However, in summer 

mostly in the early morning, when the temperature might drop for few hours and in case the occupant is 

active then such surges are expected. Hence the presence of these profiles can be attributed to the occupancy 

model, where there are times in the early morning, even though low in probability, there could exist 

instances when the occupant is active. Of the total SH-IDP generated from the base profiles, only 0.2% of 

the profiles were seen to show such behavior, however, the probability of selection for LPG accumulation 

still exists. However, since the final IDP profiles are only concerned with the aggregated DHW and SH 

profiles, sources of such profiles are indistinguishable from the aggregated IDP pool. Therefore, the 

existence of this error in the generation of solely SH profiles from the LPG is self-corrected by the model 

when dealing with aggregated profiles SH and DHW profiles. 

For IDP DHW, as expected a much larger degree of variance is observed. Here the large degree of 

fluctuations can be attributed to the occupancy model which largely defines the DHW demand. Compared 

to the OPSD, this output can be confirmed to give a more realistic profile or at least successfully provide 

the desired level of variability. The final total demand IDP profiles are generated from the base profiles, 

where most of the peaks are attributed to the DHW demand, and significantly larger variation is observed 

amongst profiles compared to the corresponding OPSD.  

4.5.2 Comparison with BDEW – Annual Scale 

The comparison of the annual profiles was done on two levels. Firstly, the comparison of the OPSD was 

done with the direct output of the LPG (base profiles) and then again, with the IDP profile. This approach 
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was chosen as it would not just compare the generated profiles to the reference but also give an overview 

of the effect of the randomness associated with both LPG and IDP. Also considering the aggregation level 

and spatial resolution of all three profiles are different, to ensure consistency in the compared data, profiles 

have been normalized to hourly power consumption per TWh. 

A comparison between the LPG and OPSD profiles was done to observe the similarity between the two 

available datasets. Though LPG is verified by Drauz, 2016, its real-world application has not been observed. 

Also, the input parameters for base profile generation runs needed validation with the existing state-of-the-

art. The cause of the difference in the IPD output, if any, can be connected to the assumptions undertaken 

for the development of the base profiles. Hence the comparison of the LPG with the OPSD was also 

performed.  

In comparison to the reference profiles, some interesting, as well as some expected results, were obtained 

as predicted before the conduction of the analysis. A high degree of fluctuation was observed between the 

OPSD and LPG DHW profiles. A very low correlational coefficient of only 0.089 was observed between 

these two profiles. This was expected as section 4.5.1 indicates daily OPSD-DHW profiles are identical 

with the daily mean representable by a horizontal line. In contrast, the LPG shows significant 

unpredictability and variability on the daily curves because of the randomness brought by the occupancy 

model. As summarized in Table 4-3 and Figure 4-9 the highest correlation between the two profiles was 

observed in the SH profiles, true considering the effect of randomness in this model is minimum. This also 

helps in rectifying the above-identified error in the SH output of the LPG. Thus, the presence of the unusual 

DHW like profiles can be overlooked in the annual profile as its impact is insignificant. The LPG total heat 

demand profiles are the aggregation of the SH and DHW profiles and show an average correlation between 

the two. An effect of randomness can be better visualized from the graph where the randomness decreases 

moving from DHW to total heat demand. In the case of the total heat demand, the correlation tends to 

increase on comparing the profiles from an hourly resolution to a daily resolution. On a daily resolution, 

the two curves seem to almost overlap each other with the correlational coefficient increasing from 0.76 to 

0.96. This also clearly indicates that the profiles are primarily different because of the implemented 

randomness in the LPG model. Hence the OPSD methodology as a result of its limited variability limits in 

has limited application in high spatial resolution studies. 

 

Comparison of the IDP profiles, for the census cells profiles, the similarity trends were seen to be much 

closer for daily demand resolution than compared to the hourly resolution. This was an expected result 

considering the high hourly variability. However, the comparison with the national aggregated IDP, the 
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generated IDP was seen to be almost identical to the OPSD profiles. This was also verified by the low 

overall cost of alignment between the two profiles. The result is also in line with that of the previous section. 

Table 4-3: Statistical Comparison-Summary (OPSD vs.Others) 

 RMSE Correlation 

Coefficient 

MAPE 

 LPG IDP  LPG IDP LPG IDP 

Total Residential heat demand 

(hourly resolution) 

91.64 49.12 0.76 0.852 75% 48% 

Total Residential heat demand 

(daily resolution) 

36.4 15.45 0.96 0.979 39.81% 11.61% 

Residential SH demand 

(hourly resolution) 

55.98 - 0.88 - - - 

Residential DHW demand 

(hourly resolution) 

300.28 - 0.089 - - - 

IDP national total heat (hourly 

resolution) 

- 3.6 - 0.92 - 2.06% 

 

Table 4-4 summarizes the statistical results obtained from the comparison of the IDP and the DIW profiles. 

Comparisons were made for the Hamburg and Berlin largest district heating networks. Unlike with the 

OPSD profiles the difference in the parameter values on daily and the hourly resolution was not seen to be 

as significant.  Nevertheless, in general, all profiles show less similarity with the DIW profiles compared 

to OPSD. This is primarily because of the piecewise linearization approach undertaken by DIW which 

results in a much steeper decline in demand in comparison to the temperature, as explained in section 2.4.2. 

The low correlation in the DIW Profiles can be observed in Figure 4-9 (g),(h). 

Table 4-4: Statistical Comparison-Summary (IDP vs. DIW) 

 RMSE Correlation 

Coefficient 

MAPE 

Hamburg (daily) 52.39 0.76 54.23% 

Hamburg (hourly) 69.39 0.65 69% 

Berlin (daily) 55.44 0.75 47.9% 

Berlin (hourly) 71.74 0.66 63.19% 
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(h) 

 Source: Author 

Figure 4-9: Correlational Plots 

(OPSD vs LPG[(a)Total Demand (hourly resolution);(b)Total Demand(daily);(c) SH (hourly);(d) DHW (hourly)];OPSD vs IDP[(e)Total demand national 

(hourly);(f) Total demand census sample(hourly)];IDP vs DIW[(g) Total Demand Berlin (hourly);(h) Total Demand Berlin(daily)])
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On comparison of the OPSD to a random IDP census cell, the correlational coefficient in an hourly 

resolution was in the range of 0.75 to 0.86. This is slightly higher than what was observed during the LPG-

OPSD comparison. The main reason for this would be due to a slight decrease of variability in IDP results 

compared to the LPG profile on a census cell level as a result of the daily demand factor scaling. The 

restrictions induced while defining the daily demand factor and the restrictions on random IDP selection 

from the pool with temperature intervals are possible reasons for this behavior. Nevertheless, aggregated 

national level IDP profile showed a much higher correlational similarity with the OPSD even on hourly 

resolution, thus further validating the similarity between these two profiles. The plots can be seen in Figure 

4-9 (e),(f). In the hourly plots, the deviated values from the best fit line are observed to be generated due to 

the DHW demand. Nevertheless, the correlational behavior is in line with the results of section 4.5.1. 

Further, the structural similarity of the two observed in section 4.4.2 provides a concrete justification on 

the ability of IDP methodology to replicate reference profiles on a national level with included higher 

variability on high spatial resolution, which is absent in other methodologies. This provides an immense 

possibility for replacing the existing SLPs. 

In terms of the coefficient of determination, 72% of the variance between the IDP and the OPSD is 

explainable, and 28% unexplainable. Thus, the IDP model provides 28% more variability in the profile. 

This in turn avoids the repetition of the daily profiles and gives unique patterns thus further confirming 

higher variability on the census cell level. Figure 4-10 provides a visualization of the IDP census cell against 

the OPSD on the annual profile. A clear variability and higher peaks can be seen in the IDP profiles as 

discussed in the previous sections. The much closer profile patterns in winter than in summer is in line with 

the results obtained in section 4.2. Similarly, the profiles for random summer and winter days show OPSD 

vs IDP behavior as discussed in. the same section. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 Source: Author 

 

Figure 4-10: IDP census cell Vs OPSD normalized 

Annual profile comparison normalized (b) Sample Summer Day Comparison (c) Sample Winter Day Comparison 

(d) Load Duration Curve 

 

Figure 4-10 (d) shows the load duration curve comparison of the IDP profiles with the BDEW. For this 

comparison, BDEW based profiles were generated for a randomly selected census cell using demndlib. The 

comparison shows a much higher peak in the IDP profile compared to the BDEW, as discussed above. The 

IDP curves are much steeper compared thus indicating unstable inconsistent demands which can be 

explained by the variability. Using BDEW would have overlooked this characteristic and resulted in 

incorrect model results. Further, following the comparison, the IDP shows hours with zero demand value 

which is absent in BDEW. Consistent results were obtained from all sample profiles. 
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4.5.3 Demand-HDD relationship 

As mentioned in section 2.4.3, the use of heating degree days is the simplest method to estimate a realistic 

heat demand profile. In the absence of available measured data, it has provided a means of close estimation 

of heating profiles, especially for the residential sector. Hence a comparative analysis of the heating degree 

days with the generated profile was performed. The comparison was done with the hypothesis that a 

statistically significant correlation will be observed between the two curves. Also, to ensure better accuracy 

in the output, the comparison was done only on a census level (non-aggregated) level. This is because the 

aggregation comparison would require the use of average temperature values. Generalized national level 

HDD would have less accuracy to a census level demand.  

 

 

(a) 

 

(b) 

 

                                                            (c) Source: Author 

Figure 4-11: HDD vs IDP profiles 

((a) HDD-IDP census sample (plot);(b) HDD vs IDP;(c) Temperature-HDD-Daily demand factor) 
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A comparative analysis of the demand with the HDD showed the following results. As can be visually 

observed in Figure 4-11 (a) a wide range of fluctuation can be observed in the demand profile compared to 

the HDD profile with much lower variability. Though consistent summer and winter seasonal patterns were 

observed in both the curves, two significant differences can also be seen. During the winter, though the 

peaks coincide with the HDD plot a clear much lower demand can be observed. On the contrary in the 

summer months, even in the absence of HDD, significant demand is observed. This winter's lower demand 

is presumably due to the consideration of building typology and the summer demand due to the inclusion 

of DHW. This has been further investigated in detail later in the chapter. 

 

As mentioned in section 2.4.3, estimating the base (threshold temperature) becomes important in 

determining the HDD. To obtain a generalized value, secondary literature was investigated to identify the 

most suitable for use for the entire country. Disregarding the effects of the altitude and the energy source 

of the heat, which greatly affects the threshold temperature, Kozarcanin et al., 2019 estimated a value of 

13.8°C  as the national average thermal temperature which is slightly higher than the one estimated by VDI 

2067, which is 12°C (Kozarcanin et al., 2019, p. 12). For the analysis of this study, both values were used 

to generate HDD with a pre-assumption that the demand profiles must be closer to the 12°C HDD profiles 

considering the LPG model is based on the VDI models (Drauz, 2016). However, this was not observed to 

be the case. Nevertheless, during the analysis, it was identified that the difference in the HDD profiles 

generated from either of the base temperature values was not significantly different and did not affect the 

HDD profiles as expected. Hence further analysis was carried out making use of 13.8°C as the base 

temperature since the source of the VDI data could not be directly accessed. The above mentioned vaues 

are lower than base temperature values mentioned in other older literature, collection of which is provided 

in  Giannakopoulos & Psiloglou, 2006. Nevertheless, considering that  Kozarcanin et al., 2019 is a very 

recent publication, these values were used.  

 

For this analysis, the generated heat demand profile was compared with the HDD profiles generated for the 

different stations from the temperature profile. Figure 4-11 (c) presents one of the results of a randomly 

selected census cell, where the IDP demand profile is compared to the corresponding HDD curve for the 

respective TRY climate station. As seen in Figure 4-11 (b) the generated profile against the HDD showed 

a high Pearson’s correlation coefficient of an R2value of 0.98 against the (Kozarcanin et al., 2019) and an 

R2 of 0.96  against the VDI values. This is in line with the correlational coefficient of over 0.9 suggested 

by  Quayle Robert G., 1979. Irrespective of the considered threshold temperature the demand profile is 

highly correlational to the HDD. The high correlation was an expected result considering the dependence 

of the profiles on ambient temperature and its implementation on both IDP and LPG models.  Since 
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Kozarcanin et al., 2019 have verified the assigned temperature, the close correlation of the IDP profiles 

with the HDD indicates the realistic nature of the profiles to a certain degree.  

 

Summer and winter deviation in HDD vs Demand 

Though a high correlation was observed between the sample profile and the respective station HDD in all 

random results, there were instances in the lower quadrants of the demand values where a null value of one 

did not correspond to the null value of the other. These time resolutions can easily be pointed out when 

comparing the HDD profile with any randomly selected sample. However, it is to be noted that such patterns 

are only distinguishable in the individual census cell residential demand profiles. Identifying the source of 

any certain peak is not possible once aggregation with CTS is done. However, though the HDD and demand 

values contradict, realistic and interesting patterns were observed in these instances. In general, two 

different scenarios could be identified.  

 

• Absence of demand in hours where the ambient temperature is below-set temperature. 

• Presence of demand in hours where the ambient temperature is above the set temperature. 

 

When the ambient temperature is less than the required set temperature (presence of HDD), instances were 

observed where the demands are absent. The majority of it was observed in the winter while some hours in 

the summer also observed this behavior. In both cases, such demand curve behavior was observed during 

late night and early mornings (in between 23:00-3:00) as seen in Figure 4-12 (a) where each bar in the graph 

indicates the hour count where no demand was observed even in the presence of HDD, aggregated over 24 

hours for a whole year. The highest probabilistic occupancy status at this time interval is expected to be 

inactive, thus partially justifying the absence of the demand in terms of DHW, since the occupant is 

expected to be active for the DHW consumption to occur. Though the SH is not as much affected by the 

activity of the occupant, the justification for both the summer and winter months can be made considering 

the thermal heat storage in the buildings. The energy stored in the buildings maintains the desired comfort 

temperature, thus making the need for additional SH non-essential (Hellwig, 2003). Also, this indicates that 

HDD is a method designed for the estimation of heating demand and not vice versa as demand also depends 

on numerous other factors.  
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(a) 

 

(b) 

Source: Author 

Figure 4-12: HDD vs Demand (Winter and Summer Abnormalities) 

((a) No demand in presence of HDD;(b) Demand in absence of HDD) 

 

In contrast, the opposing scenario is when there is the absence of HDD (temperature above set the 

temperature), but the presence of demand as seen in Figure 4-12 (b). As mentioned by As can be observed 

the presence of demand is centered in the hours where the occupants are expected to be home and active as 

per the occupancy model. Also, the majority of these demands are observed in the summer months where 

the baseload from SH is expected to be absent. Considering the observed distribution in both hourly and 

monthly resolution, the majority of this demand can be attributed to DHW. In addition, the aggregated 
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demand in MWh for these time scenarios further justified the peak energy consumption to be during the 

occupant’s high probabilistic active state. In early mornings and late nights, though the hour counts with 

demand are observed to be higher, the corresponding aggregated demand is significantly lower, thus further 

validating the above justification of the demand source being primarily DHW.  Though Sarak & Satman, 

2003 mention the absence of demand in the absence of HDD, this is not the case here as other non-

temperature dependent components of the demand are also taken into consideration. 

  

Since the load profile generator is a closed source model, detailed firsthand interaction and analysis were 

not possible during this study. Nevertheless, the above-given justification provides a realistic evaluation for 

the behavior of the curves and the randomness in the applied approach provides a better inclusion of 

behavioral aspects, whose mathematical replication would have been difficult. Though Kozarcanin et al., 

2019 argue the possibility of determining the culture-specific heat demand behavior by studying the primary 

energy consumption, obtaining sufficient data for doing so on a high spatial resolution as planned by the 

methodology of the study becomes difficult. Also, the mathematical representation and inclusion of all 

these factors become difficult, thus a stochastic approach was implemented to ensure its maximum inclusion 

of these parameters. Hence the randomness seems to provide an adequate and desired consumer behavioral 

aspect of the heat demand profile.  

 

Overall, this analysis could help qualitatively justify the aspects of the curve concerning realistic and 

expected heat demand patterns. However, for further improvement and detailed validation additional tests 

and comparisons were conducted. 

 

HDD to h-factor 

For the implemented IDP methodology, the interpretation of the effect of ambient temperature is slightly 

changed then the HDD, as building properties are also taken into consideration as described in section 3.1.5. 

A Pearson’s correlation of 0.98 on a daily resolution and 0.93 on an hourly resolution was observed between 

the HDD and the h-factor curve. This slight difference is caused by the consideration of all these additional 

factors in the IDP methodology, and some mathematical changes implemented for better results. For 

instance, the IDP methodology makes use of a geometrical progression to calculate the temperature values 

as suggested by Hellwig, 2003 which is another reason for the deviation. Nevertheless, the h-factor can be 

stated as an improved version of HDD as a better and realistic relationship with the temperature can be 

replicated. The linear relationship in HDD is replaced by the sigmoid function. Even on consideration of 

older building classes of the correlation with HDD was not significantly different. Hence the approach of 

considering only the newer building classes to reduce complexity is justifiable.  
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4.5.4 Demand-Temperature relationship 

The best representation of the relationship between heating demand and temperature is a sigmoid curve 

(Hellwig, 2003) also implemented in (BDEW et al., 2020) with alterations to the equations. Hence for the 

generated demand profiles, the relationship with the temperature was plotted to compare the covariance and 

determine a best-fit equation.  

 

Again, as with all other previous analyses, the use of average temperature data was avoided thus making 

the analysis only for census cell profiles. Firstly, the h-factor vs the temperature showed an anticipated 

result as seen in Figure 4-13(a) where the plot is divided into 3 sections based on the temperature 

represented by the 3 best-fit lines. The h-factor analysis was conducted only on a daily resolution 

considering the h-factor values are calculated based on daily average temperature values. A linear best fit 

line showed a high Pearson’s correlation in the middle-temperature range in between 0 to 15°C. In the 

extreme temperatures, the correlation was seen to be slightly lower. A better representation of the curves in 

these two endpoints would be with a sigmoid curve. Literature indicates a constant demand value on 

temperature extremes, an exceedance of 24°C in the summer, and temperatures below -5°C in the winter 

(Fallahnejad & Eberl, 2016). But such behavior of the curves could not be visualized as such extreme 

temperature values were not available in the sample data and are also seldom anticipated in the German 

temperature profiles (Fallahnejad & Eberl, 2016).   

 

Comparing the demand with the temperature showed a lesser correlation especially on an hourly resolution. 

This is mainly due to the output obtained from the LPG generator which due to the presence of DHW 

provides random peaks which are unaffected by the temperature. Thus a low correlation with the best fit 

line is observed as seen in Figure 4-13(b).On the exclusion of the DHW demand, a much better best fit 

relation could be obtained thus showing the temperature and demand dependence for SH. Thus, it can be 

stated that implementing the desired variability in the demand profiles results in the decrease of the 

covariance between the demand and temperature in comparison to the desired results. Nevertheless, this 

degree of decreased covariance is acceptable, considering non-temperature dependent components of 

demand of DHW and CTS are also considered in the final profiles.  

 

Table 4-5 below shows the summary of the calculated values of Pearson’s correlation between the h-

factor/demand and the temperature. For a linear best fit line, also shown in Figure 4-13(b), the overall 

relationship is divided into 3 components based on the temperature value. As anticipated a higher 

correlation was obtained for the h-factor over demand since it is a direct output of the sigmoid function and 

demand is inclusive of DHW, CTS, and a further degree of randomness. This also validates the behavior  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 Source: Author 

Figure 4-13: Demand vs Temperature 

((a) Temperature vs. h-factor;(b) Temperature vs. Demand(hourly);(c) Temperature vs. Demand(daily); (d) Temperature vs. Demand(sigmoid bestfit)
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seen in section 4.5.3 where demand is seen even in the absence of HDD. Since SH and temperature as seen 

to be very closely related, this abnormal behavior is only explainable by DHW. 

Table 4-5: Temperature-Demand Covariance 

Parameter Resolution Correlation 

h-factor Daily Lower: - 0.88 

Medium: - 0.97 

Higher: - 0.77 

Demand Hourly Lower: - 0.16 

Medium: - 0.5 

Higher: - 0.018 

Demand Daily Lower: - -0.88 

Medium: - 0.97 

Higher: - 0.58 

 

The obtained Pearson’s correlation values closely match values presented in Eriksson, 2012 ranging 

between 0.88 to 0.92. Though Eriksson presents generation profiles, the behavior of the curves is expected 

to closely match the demand curves. Also, both the demand and generation of heat are closely linked to the 

temperature. To improve the results Eriksson, 2012, makes corrections to the profiles to better fit the 

sigmoid representation. But no further alterations have been done in this study considering the profiles have 

the presence of non-temperature dependent components as well. Thus, the underlying demand-temperature 

relationship for SH provides a means of validation to the generated output. 

 

Finally, comparing paring the sigmoid best fit line to the of the OPSD and the IDP census level normalized 

profiles showed a high correlation of 0.97 on a daily resolution level. A high best fit sigmoid correlation of 

0.96 was also seen in the hourly resolution of the best fit line. The hourly resolution also showed two 

distinctive profiles clusters which were further verified to be winter and summer demand. This hourly 

similarity was seen only in OPSD comparison.  

 

All in all, the dependence of heat demand on temperature is significant. The results obtained from the above 

analysis illustrate the existence of this relationship in IDP profiles. The existing relationship is verified to 

be true considering similarities observed in reference profiles. Thus, this provides a strong validation with 

regards to the implemented methodology generating realistic demand profiles or at least one with the same 

level of accuracy as seen in existing studies.  
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5 Conclusion and Outlook 

The vision of the German energy sector to attain carbon neutrality by 2050 requires robust planning. 

Electrification of all energy demand through sector coupling is seen as a major step towards achieving this 

vision. But to ensure a smooth transition, the planning phases require a detailed energy modelling study 

with regards to the analysis of the demand, generation, and capability of the supply grid. The nature of 

detail in energy modelling results is largely dependent on the granularity of the working data.  

However, data availability on the required or desired granularity may be rare and difficult to acquire even 

in case of its availability. This holds truer especially in the case of heat demand data where the practice of 

user measurement is uncommon. Thus, data availability is only limited to the annual total demand, which 

is not sufficient if the analysis is regarding the electrification of these demands. Though the heating utilities 

are obliged to keep track of their supply, publishing these data is not mandatory. This leaves a large gap in 

the availability of high granularity data in the heating sector. In the absence of the measured data, a 

methodology with the capability to correctly estimate the demand profiles becomes important. Hence this 

study focuses on filling this gap in data availability to ensure open-source access to the high-resolution 

heating demand profiles for Germany. 

For the thesis, the study in collaboration with eGon research project aimed at a granularity of 100 X 100 

m2 high spatial resolution and an hourly temporal resolution. Though the data available on the required 

granularity level is absent, methodologies and studies regarding the estimation of the heat demand profile 

are not new. On the contrary, studies conducted in the German heating sector are seen as a pioneer. A 

common practice of the application of the German methodologies for the estimation of heating demand in 

other European countries was also seen. In addition, existing open-source databases were also identified 

over the course of the study which provides heat demand profiles on some spatial aggregation level, in an 

hourly temporal resolution. These methodologies make use of the currently existing state-of-the-art 

Standard Load Profiles (SLP) or some form minor alterations to it. However, the SLP for heating demand 

is developed based on the natural gas supply, and though it gives validated realistic results in aggregated 

spatial resolution, the output is further away from reality in a high spatial resolution, primarily due to their 

inability to represent DHW which is a direct cause of peaks in the profile. This may not have a significant 

impact in the case of non-electric supply, but with the planned electrification of the sector, the correct 

acknowledgment of these peaks becomes especially important in terms of sufficiency in supply and capacity 

of the grid.  Hence this deems the use of the existing SLPs unfeasible for such energy modelling analysis 

and thus making high variability heat demand profiles database as proposed by this study a necessity.  
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The thesis was broadly classified to cover two major objectives. The primary being the generation of the 

said profiles. For this a new methodology referred to as the Intra Day Profile (IDP) was developed and 

implemented. The study conducted under the project was principally designed to create a database that fits 

the requirements of the project's energy modelling tool. However, the database is also accessible for other 

applications. Secondly, the validation of these results in terms of accuracy and its correct representation of 

a realistic heat demand behavior was necessary. This was conducted through the implementation of 

numerous statistical measures primarily comparing it to other reference profiles.  

Some of the salient features of the generated profiles are as follows: 

• The final heat demand database is available in two future scenarios for 2035 and 2050. For ease in 

storage, the profiles have been aggregated into two categories of potential district heating and individual 

supply. 

• A large variability with regards to the hourly resolution of each indivudal profile is noticeable. This is 

due to the underlying stochastic bottom-up approach for the generation of the profiles further 

randomized by the selection process of individual day profiles. This enables the generation of unique 

profiles per census cell. 

• The overall trend of peakier profiles is observed compared to much smoother ones developed from 

other established methodologies. These peaks in the individual census profiles provide a better 

representation of the DHW demand. Thus, the profiles are arguably more realistic.  

• The relationship between the demand and ambient temperature for the residential sector is represented 

by a sigmoid curve, truer on a daily resolution than on a highly variable hourly resolution. 

• The profiles both on individual and aggregation levels show autocorrelative demand behavior. The 

demand of any given hour is depedendent on the corresponding hour of preceding 3-4 days with 

statistical significance, depending on the temperature patterns of the location.  

• The level of aggregation is inversely proportional to the variability offered by the profiles. As the 

aggregation increases the variability tends to be closer to that offered by the existing SLPs. 

• A justifiable behavior of summer demand dominated by DHW peaks and winter demand explainable 

in terms of the implementation of building thermal energy storage provides logical explanations to the 

generated profile patterns. 

• The winter demand in the generated profiles is much closer to that in the reference profiles considering 

the presence of a continuous baseload which is common for all BDEW based profiles.  

The statistical validation and comparison of the generated profiles showed the following results: 
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• The similarity in the nature of the curve is statistically verified on all aggregation levels. However, cell-

level generated profiles showed a tendency of non-stationarity behavior induced due to the fluctuating 

variations in the individual profiles introduced by randomness.  

• A consistent weather seasonality pattern was observed in profiles that closely follow the ambient 

temperature patterns. This on one hand provides validation considering the temperature dependence of 

the demand profiles and further shows the dominance of SH demand on the overall census demand. 

• A Pearson’s correlation test showed a high correlation between the generated profiles on a daily 

resolution and slightly lower on an hourly resolution. A Chow break test showed structural similarity 

between the generated profiles and OPSD reference profiles on an aggregated level.  

• The least overall cost of profile alignment was observed with OPSD on the national level, with cost 

inversely proportional to the degree of aggregation. The DIW profiles were concluded to be 

considerably different from the generated results.  

Even with a higher degree of variability on a high spatial resolution, a consistent and controlled variability 

was observed with increased aggregation. Hence it can be concluded that the generated profiles show 

potential for replacing the existing SLPs as detailed demand fluctuations are better interpreted in this 

methodology compared to the existing state of the art. Nevertheless, considering the similarity in variability 

between IDP and reference profiles once profiles are aggregated, the use of either, on a national level or a 

regional level aggregation for energy modelling is expected to generate similar results. However, for studies 

dealing with high spatial resolution, as proposed by eGon for making use of census level profiles for grid 

optimization, the analysis with IDP is expected to provide higher details and accurate results. Hence when 

dealing with high-resolution energy modelling analysis the replacement of SLPs with the IDP generated 

profiles would be recommended.  

Finally, potential measures for improvements were identified with regards to the obtained results. However, 

these could not be implemented in the study. Prior to the initiation of the study a third objective regarding 

the application of the generated profiles in the eTrago energy modelling tool had also been proposed. 

However due to the time constraints and unprecedented issues with the modelling tool this objective could 

not be fulfilled. Hence as a continuation of the work initiated in this thesis, the application of the generated 

profiles could provide better insight into the usability of the profiles and the impact this additional load has 

on grid optimization in terms of grid extension and associated costs. Successful usability would provide 

means of further validation and confirm the statistical results. As a final measure possible alterations to the 

LPG model can be performed to include newer building classes which are also expected to provide 

improvements to the results. Also  identification and implementation of improved data sources representing 
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the CTS sector providing a higher degree of variability can be done to ensure the same level of granularity 

as in the residential sector  

All in all, the study was able to generate demand profiles on a high spatial resolution of 100 X 100m2 

(census cell) for an hourly temporal resolution. The stochastic bottom-up approach for estimation of the 

hourly demand values enabled the generation of non-identical profiles for individual cells with a large 

degree of hourly variability. This high inter and intra profile variability is expected to provide a higher 

degree of detail and accuracy to results during the energy modelling application of these demand time-

series. The results were verified and are available as open-source data for future applications. 
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ANNEX 

Annex A: Demanlib building typology classification 

 

 
parameter_a parameter_b parameter_c parameter_d building_class shlp_type 

0 3.2279446 -37.42148 6.2222288 0.0828441 1 SFH 

1 3.2107659 -37.41788 6.2024 0.0865217 2 SFH 

2 3.1935978 -37.414248 6.1824021 0.0901957 3 SFH 

3 3.1764404 -37.410583 6.1622336 0.0938662 4 SFH 

4 3.159294 -37.406886 6.1418926 0.0975329 5 SFH 

5 3.1421588 -37.403156 6.1213773 0.1011959 6 SFH 

6 3.1250349 -37.399394 6.1006859 0.104855 7 SFH 

7 3.1079226 -37.395599 6.0798166 0.1085103 8 SFH 

8 3.0908222 -37.391772 6.0587677 0.1121617 9 SFH 

9 3.0737337 -37.387913 6.0375374 0.1158091 10 SFH 

10 3.1850191 -37.412416 6.1723179 0.0920309 11 SFH 

11 2.5736652 -35.016944 6.131814 0.0996851 1 MFH 

12 2.5516882 -35.023422 6.1680699 0.108708 2 MFH 

13 2.529738 -35.030015 6.2051109 0.1177216 3 MFH 

14 2.507817 -35.036736 6.2430159 0.1267238 4 MFH 

15 2.4859161 -35.043598 6.2818214 0.1357193 5 MFH 

16 2.4640414 -35.050587 6.321514 0.1447056 6 MFH 

17 2.4421941 -35.057708 6.3621285 0.153682 7 MFH 

18 2.4203748 -35.064962 6.4036973 0.1626484 8 MFH 

19 2.398584 -35.072352 6.446253 0.1716044 9 MFH 

20 2.3768224 -35.079882 6.4898289 0.1805499 10 MFH 

21 2.5187775 -35.033375 6.2240634 0.1222227 11 MFH 

Source: (Oemof Developing Group, 2016) 
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Annex B: IWU Building Typology 

 

Source: (Drauz, 2016) 
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Annex C: LPG profile behavior-Summary 

 SH DHW 

Total Demand • Higher Demand in Lower 

building classes 

• Inverse effect of occupant 

number 

• Effect of the household 

typology is almost 

completely absent 

• Greatly affected by the 

occupant number 

Peak • Higher Demand in Lower 

building classes 

• The effect of the occupant 

number is negligible 

• Effect of the household 

typology is almost 

completely absent 

• Greatly affected by the 

occupant number 

Variance • Effect of the household 

typology is insignificant 

• Effect is proportional to the 

occupant number 

• Effect of the household 

typology is almost 

completely absent 

• Inversely proportional to the 

occupant number 
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Annex D: Variability observed in IDP Pool 

  

  

  

  



88 

 

  

  

  

  



89 

 

  

 

 

Annex E: IDP Pool comparison with BDEW profiles 

Class SFH MFH 

Class2 
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